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Abstract

This paper studies how wealth and aging affect portfolio choices in a life-cycle

model with ambiguity aversion. In the absence of ambiguity, the model delivers

a constant share of wealth invested in risky assets for all agents, as in Merton

(1969). With ambiguity aversion, wealthier and older agents become endogenously

more optimistic about risky asset returns, relative to poorer younger agents. This

delivers an age profile of risky asset shares in line with that in US data. As life

expectancy grows, old agents become even more optimistic, while young agents

become more pessimistic, amplifying the age gaps in portfolio composition, and

implying further increases in intergenerational inequality.
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1 Introduction

When faced with Knightian uncertainty, ambiguity averse agents over-weight the proba-

bility of the ‘worst case’ outcomes with low utility realizations (Gilboa and Schmeidler,

1989; Hansen and Sargent, 2008). These belief distortions differ according to the agent’s

environment, preferences, and characteristics: the worst case is very different, for exam-

ple, for wealthy and poor households (Michelacci and Paciello, 2020, 2023), or between

different policy regimes (Ferriere and Karantounias, 2019). As a consequence, when an

economy goes through a structural shift, the belief distortions due to ambiguity aversion

may change, with implications for a range of aggregate and distributional outcomes.

In this paper, we explore these effects for one of the key shifts taking place in developed

economies today: population aging. In particular, we ask how increased lifespans affect

ambiguity-averse beliefs about asset returns, and what that implies for portfolio choices

and asset prices. This is likely to be important for policy in the coming decades, as

savings behavior has been at the forefront of recent discussions of economic policy under

demographic change (Goodhart and Pradhan, 2020; Auclert et al., 2021; Kopecky and

Taylor, 2022). Moreover, there is substantial empirical evidence that ambiguity aversion

is a key determinant of portfolio choices and asset prices (Antoniou et al., 2015; Dimmock

et al., 2016; Collard et al., 2018; Corgnet et al., 2020).

To analyse the interaction between aging, portfolio choice, and ambiguity aversion, we

build an overlapping-generations model with ambiguity over risky asset returns. We find

that increases in life expectancy cause young agents to distort their beliefs more strongly

towards pessimistic outcomes, while older agents in contrast become more optimistic.

Population aging therefore increases the concentration of equity holdings among older

households, as their relatively more optimistic beliefs drive them to choose higher risky

asset shares than the young. This in turn implies older generations become relatively

wealthier, as they earn greater asset returns than younger agents. In a quantitative illus-

tration, the model predicts that plausible longevity increases over the next 80 years will

cause the age-profile of risky asset shares to steepen by 9%. In addition, this population

aging also substantially increases the heterogeneity in portfolio holdings within cohorts.

As in Eggertsson et al. (2019) and Malmendier et al. (2020), we mostly focus on

a simple case of the model with maximum three-period lifespans. This allows us to

obtain analytic results, and inspect the mechanisms at work. We model ambiguity using

so-called ‘multiplier preferences’, in which agents whose payoffs are more exposed to

ambiguity distort their beliefs more strongly towards low-utility states (Hansen et al.,

1999). Although all investors view low returns as the worst case, a given drop in returns is

much more damaging to some investors than others, and those who would be particularly
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badly affected do more to insure themselves against that possibility.1

We begin our analysis in a small open economy aging alone, in which safe asset returns

and the distribution of risky asset returns are held fixed. We find that ambiguity aversion

endogenously generates return expectations which are increasing in wealth and age. This

is consistent with survey evidence on return expectations (Giglio et al., 2021), experiments

on biases in financial decision-making (Kovalchik et al., 2005), and the observation that

young and poor households typically hold less risky portfolios than those further up the

age and wealth distribution (Chang et al., 2018; Catherine, 2022). Note that we match

this last result despite the fact that, in the absence of ambiguity, the model reduces to a

simple Merton (1969)-style model in which risky asset shares are constant for all agents.

Importantly, the effects of age on responses to ambiguity are driven by changes in

life expectancy, rather than the number of years an agent has lived. As a consequence,

reductions in mortality rates for older agents cause changes in the age profile of risky

asset shares. Specifically, as mortality rates fall young and old agents adjust their return

expectations in opposite directions. The young become more pessimistic, distorting be-

liefs more strongly towards low risky asset returns, and investing less as a result - while

simultaneously older agents become more optimistic, and invest more. As populations

age around the world, this has consequences for the future of intergenerational inequality

and the composition of asset demand.

These endogenous changes in responses to ambiguity with wealth and life expectancy

come about because of the interaction of two distinct channels. The first is the ‘wealth

channel’, in which an agent who is saving more is more exposed in monetary terms to low

asset returns. They have more ‘skin in the game’, and so have a greater desire to make

their decisions robust to returns ambiguity, implying more pessimistic expectations.2 The

second is the ‘marginal utility channel’, in which an agent who expects to have a high

marginal utility of consumption in the next period suffers a greater utility loss from a

given fall in wealth. A poor agent may not lose much in monetary terms from a fall in

returns, but due to the curvature of standard utility functions, they have a high marginal

utility of consumption, and so of wealth. A small monetary loss can therefore have large

utility consequences for these agents.

As life expectancy increases, younger agents save more, to fund consumption in their

now-extended old age. They also expect to do the same throughout their middle age,

implying lower consumption in the immediate future. With a diminishing marginal utility

1Several existing models of ambiguity aversion in portfolio choice instead assume all investors distort
beliefs to the lowest return among a given set of possibilities, the range of which is typically specified
as an exogenous aspect of preferences. This distinction is discussed further in the Related Literature
section below.

2This echoes the literature arguing wealthier households have more incentive to process information
about asset returns, for the same reason (Arrow, 1987; Lei, 2019; Macaulay, 2021).

2



of consumption, this means that through both channels they become more exposed to

shortfalls in asset returns, so they distort their beliefs more towards low returns to make

their decisions more robust to ambiguity. As a result they invest less in risky assets, and

instead allocate more of their savings to the risk-free asset.

For agents in middle age, the wealth channel operates in the same way. However, the

marginal utility channel is reversed. When the probability of surviving into old age is

low, they do not save much for those potential future periods. Conditional on survival,

their old-age consumption is therefore low. As the mortality rate falls and life expectancy

rises, they save more for their old age, which implies greater consumption in that period.

As such, rising life expectancy reduces the expected marginal utility of consumption in

old age, implying utility is less exposed to a given fall in wealth. Through the marginal

utility channel, middle-aged agents therefore become more optimistic about asset returns,

and increase their portfolio share in risky assets.

Which of these channels dominates is regulated by a simple condition: with CRRA

preferences, the marginal utility channel dominates if and only if the elasticity of intertem-

poral substitution (EIS) is less than 1. In that case marginal utility changes sharply with

(future) wealth, and so outweighs the wealth channel. Intuitively, this is related to the

standard result that income effects of interest rate changes dominate substitution effects

when the EIS is less than 1 (see Flynn et al., 2023, for an extended discussion). Substi-

tution effects are small when marginal utility is highly convex, and this is precisely when

our marginal utility channel is large. Attempts to measure the EIS among households

typically find values below 1 (Havránek, 2015), so we take this as our baseline.

A similar logic drives the effects of wealth on return expectations. An increase in

wealth implies agents save more, making them more exposed to return fluctuations. At

the same time, they expect to be wealthier in the future, which reduces their expected

marginal utility of wealth. As with changes in life expectancy, the marginal utility channel

dominates whenever the EIS is less than 1, in which case wealth reduces the extent to

which agents distort return beliefs due to ambiguity aversion. Interestingly, this can be

seen as an alternative explanation for the result in the literature on experience-based-

learning that households who experience high returns are more optimistic about returns

in the future (Malmendier and Nagel, 2011; Foltyn, 2020).

After characterizing these channels, we extend the model to a closed economy, in

which the equity premium is endogenous. Initially, as life expectancy rises from a low

level, the dominant force is the increasing optimism of the middle-aged agents. Aggregate

demand for risk rises, and the equity premium falls. However, as life expectancy continues

to grow, increases in middle-aged optimism slow down, and are eventually dominated by

the greater pessimism of the young. Past a certain threshold, aggregate demand for risky
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assets begins to decline, and the equity premium rises as a result. This occurs because the

effects of age on beliefs are smaller in the model for agents with more wealth. As mortality

rates fall, young agents save more for their old age, middle-aged agents become wealthier,

and so middle-aged agents become increasingly unresponsive to further increases in life

expectancy. Interestingly, although the model is very stylized, this result is consistent

with the U-shaped evolution of the equity premium observed across developed economies

since 1950 (Kuvshinov and Zimmermann, 2020).

Finally, we end with an illustration of how these effects might play out with plau-

sible degrees of demographic change in the coming decades. We extend the model to

100-year-plus maximum lifespans, and calibrate it to data on wealth and mortality rates

in the US in 2019. The model produces risky portfolio shares that are increasing and

concave in wealth, as in data from the Survey of Consumer Finances. We then simulate

the effect of an increase in life expectancy, replacing the calibrated 2019 mortality rates

with projected mortality rates for 2100. As in the analytical model, young agents become

more pessimistic about asset returns relative to older agents, so the gap between the risky

asset shares of old and young widens. Comparing those with median levels of wealth in

each cohort, the increase in life expectancy increases the slope of the age-profile of risky

asset shares by 9%. Going further, we also find that the effects of aging on beliefs are sub-

stantially more pronounced among those with lower levels of wealth. Overall, this means

that the simulated aging to the year 2100 leads to large increases in within-generation

portfolio heterogeneity, on top of the effects across generations.

Related Literature: We principally contribute to the literatures on ambiguity aver-

sion, demographic change, and life-cycle portfolio choice in macroeconomics and finance.

Ambiguity aversion has been successful in providing theoretical explanations for a

number of phenomena in macroeconomics and finance (see reviews in Ilut and Schneider

(2022) and Epstein and Schneider (2010)). Our work is particularly related to models

in which agents can endogenously adjust their response to ambiguity based on their

own exposure to the variable(s) in question (Hansen et al., 1999; Cagetti et al., 2002;

Bidder and Smith, 2012),3 even with constant preferences. In particular, Michelacci and

Paciello (2023, 2020) show that with ambiguity aversion wealthy and poor households

hold systematically different expectations of aggregate variables. This explains several

features of survey data on expectations, and influences macroeconomic dynamics. Our

3These examples, like us, use so-called ‘multiplier preferences’, in which agents distort beliefs towards
a worst-case model, subject to a penalty of belief distortions which is linear in the relative entropy
between the central and worst-case model used. An alternative approach that also allows endogenous
adjustment of belief distortions is the smooth ambiguity preferences of Klibanoff et al. (2005, 2009),
adapted to macroeconomic settings in Altug et al. (2020). Chen et al. (2014) use this in a model of
portfolio choice, but do not study changes over the life-cycle or with age.
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model extends these insights to portfolio choice, and shows that demographic changes

therefore affect inequality and the equity premium.

Several of our results for how the belief distortions driven by ambiguity change with

age and wealth depend on whether the elasticity of intertemporal substitution is greater

or less than 1. In this we therefore add to the insights of Ferriere and Karantounias (2019)

and Balter et al. (2022), who show that the same condition determines the outcome of

models of optimal fiscal policy and momentum in asset return expectations respectively,

once ambiguity aversion is present. Recent empirical evidence has tended to favor an

EIS substantially below 1 (Havránek, 2015; Crump et al., 2022), so we take this as the

baseline case for our analysis.

Our results are relevant for the literature on how demographic change will affect asset

markets and inequality. A variety of papers have studied demographic effects on aggregate

asset demand by holding age profiles of asset holdings or savings rates fixed, and changing

the proportions of households within each age group in line with past demographic data,

or future projections (e.g. Mankiw andWeil, 1989; Mian et al., 2021).4 This approach only

yields sufficient statistics for aggregate asset demand if household decision rules depend

on that household’s age, but are otherwise independent of aggregate demographic change

(Auclert et al., 2021). We show that under ambiguity aversion, that is not the case, as

changes in life expectancy affect these decision rules.

Finally, we also relate to the large literature on portfolio choice over the life cycle (see

Gomes et al., 2021, for a review). Within this literature, a number of papers have proposed

mechanisms to explain why older households typically invest the same or greater shares

of their wealth in risky assets than young households. This pattern, while not present in

standard life-cycle models (Cocco et al., 2005; Gomes, 2020), can be generated by declines

in labor market uncertainty as households age (Chang et al., 2018), or the cyclicality of

return skewness (Catherine, 2022). Indeed, like us, Campanale (2011) and Peijnenburg

(2018) offer explanations of the data based on ambiguity aversion.

We view the mechanism in this paper as complementary to these other forces. The

key conceptual distinction between us and the existing literature is that in many of these

previous papers, portfolio choices depend explicitly on the number of years an agent has

lived to date. In contrast, the endogenous responses to ambiguity in our model imply

that return expectations and portfolio decisions depend on the number of years an agent

expects to live in the future.5 In Peijnenburg (2018), for example, savers face Knightian

4An alternative approach analyses quantitative life-cycle models with rational expectations (e.g. Car-
valho et al., 2016; Kopecky and Taylor, 2022), which also abstract from the mechanisms we study.

5Note that this implies the same mechanisms operate for any increase in subjective survival proba-
bilities, even if that is not reflected in objective reality (such deviations are studied in e.g. Grevenbrock
et al. (2021)). We abstract from this in this model to highlight the effects through returns ambiguity.
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uncertainty over a bounded interval of possible mean asset returns. With every period

of life, they observe some returns data, and so are able to shrink that interval. Since

ambiguity-averse agents in that model set return expectations to the lower bound of

the plausible interval, that learning results in expected risky asset returns that rise with

age.6 In our model, we instead consider a constant preference for robustness, and abstract

from reductions in ambiguity through learning.7 In this environment, we show that older

households are typically less vulnerable to return shortfalls, and so choose to react less

to their ambiguity. This mechanism therefore implies ambiguity aversion can generate

an upward-sloping age profile of risky asset shares, even if young poor households learn

nothing about asset markets, as would be the case if they choose not to pay attention

to them (as in e.g. Lei, 2019; Macaulay, 2021). Importantly, our mechanism also means

that the age-profile of risky asset shares changes with life expectancy: as the population

ages, older households become even more optimistic about asset returns relative to the

young, and so the age gradient of risky asset shares gets steeper.

The rest of the paper is organized as follows. Section 2 sets out the model environment

with a general maximum lifespan. Section 3 characterizes the effects of ambiguity aversion

and demographic change analytically in the special case where the maximum lifespan is 3

periods. Section 4 calibrates the model to the US in 2019, and explores the implications

for the age profile of risky asset shares both now and in the future. Section 5 concludes.

2 Model

2.1 Environment

Demographics: In each period t, a continuum of agents with measure 1 are born with

age j = 0. An agent of age j survives to age j + 1 in the next period with exogenous

probability ϕj. We set ϕJ = 0, implying a maximum age of J . There is no population

growth.

Preferences: An agent of age j chooses consumption and their portfolio allocation to

6Similarly, in Chang et al. (2018) labor market uncertainty declines as households age, which enables
them to take more risk in their asset portfolios.

7A related model with multiplier preferences is Maenhout (2004). However, in that model the prefer-
ence for robustness is normalized by wealth. While this normalization makes the model more tractable,
it also assumes away many of the changes in belief distortions we study, and so abstracts from the
mechanisms in our model.
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maximize expected discounted lifetime utility:

Uj,t = Ej,t

J∑
k=j

[
βk−jΦj,k

c1−γ
k,t+k−j

1− γ

]
(1)

where β is the discount factor, cj,t is the consumption of an agent with age j in period

t, and γ is relative risk aversion. Φj,k is the cumulative probability of surviving to age k,

conditional on having survived to age j, defined as:

Φj,k =

1 for k = j∏k−1
x=j ϕx for k > j

(2)

Ambiguity aversion affects choices because it distorts the expectations operator Ej,t away

from the expectations calculated under the objective probability distribution of future

outcomes. Specifically, ambiguity averse agents over-weight the probabilities of future

states with low utility, and underweight states with high utility (Gilboa and Schmeidler,

1989; Hansen and Sargent, 2008).

Endowment and Savings: Agents are born with an endowment of w0 units of wealth.

There is no labor income.8 The wealth of an agent of age j in period t is denoted wj,t.

There are two assets available for savings: a risk-free bond with gross interest rate

Rf , and a risky asset with a gross return of Rt. The return on the risky asset is such that

log(Rt) has an i.i.d. Normal distribution with mean µ̃ and variance σ2. For the results

below, it will be helpful to define µ = µ̃+ σ2/2, where µ is the logarithm of EtRt+1.

Finally, we impose that wJ+1 ≥ 0, which prevents agents from borrowing when they

know for certain they are in their final period. There are no bequests, so by assumption

if an agent dies with positive asset holdings those assets are destroyed.

2.2 Value Functions

Denoting the share of the agent’s period-t wealth invested in risky assets as αj,t ∈ [0, 1],9

the agent’s utility maximization problem can be written as:

Vj(wj) = max
cj,t,αj,t

{
c1−γ
j,t

1− γ
+ βϕjE[Vj+1(wj+1)]

}
(3)

8The advantage of this assumption is that, in the absence of ambiguity aversion, it implies a constant
portfolio share in risky assets for all ages (Merton, 1969). All changes in portfolio shares in our model
must therefore come from the interaction of ambiguity aversion and aging.

9In all of the analysis here and in Section 3 we focus on the interior solution where these constraints
on αj,t do not bind. They will however become relevant in Section 4.
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subject to:

wj+1 = (wj − cj)R
p
j,t+1 (4)

wJ+1 ≥ 0 (5)

where Rp
j,t+1 is the agent’s total return on their portfolio:

Rp
j,t+1 ≡ Rf + (Rt+1 −Rf )αj,t (6)

Note that since Rp
j,t+1 is a weighted average over a constant Rf and a log-normal

variable Rt, it is not itself log-normal. We follow Campbell (1993) and proceed with a log-

linear approximation to the relationship between log portfolio returns and log individual-

asset returns, taken about the point with zero excess returns:10

log(Rp
j,t+1) ≈ rf + αj,t(rt+1 − rf ) +

1

2
αj,t(1− αj,t)σ

2 (7)

where rt+1, r
f denote the log returns on the risky and safe assets respectively. With this

approximation, the budget constraint (4) becomes:

wj+1 = (wj − cj,t) exp

[
rf + αj,t(rt+1 − rf ) +

1

2
αj,t(1− αj,t)σ

2

]
(8)

Solution Without Ambiguity: If there is no ambiguity, the expectations operator Ej,t

coincides with expectations formed under the objective probability distribution of returns.

Proposition 1 gives the optimal consumption and portfolio allocations in this case.

Proposition 1 Solving the household optimization (3) subject to (8) and (5), without

ambiguity aversion, implies a value function of the form:

Vj(wj) = Aj

w1−γ
j

1− γ
(9)

where

Aj =


(

1+bj+1

bj+1

)γ
for j = 0, ..., J − 1

1 for j = J
(10)

bj+1 =

[
βϕjAj+1[1 + (1− γ)rf +

1

2
(1− γ)

(µ− rf )2

γσ2
]

]− 1
γ

(11)

10This approximation is exact in the limit of continuous time (Campbell and Viceira, 2002).
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Optimal consumption and portfolio choices are given by:

α∗ =
µ− rf

γσ2
(12)

c∗j,t =


bj+1

1+bj+1
wj for j < J

wj for j = J
(13)

Proof. Appendix A

As is well-known, this type of problem implies that the proportion of the agent’s port-

folio invested in risky assets is constant over time and age (Campbell and Viceira, 2002).

However, the path of optimal consumption depends on future survival probabilities, and

therefore varies over the life-cycle.

2.3 Ambiguity Aversion

We consider the case in which there is ambiguity over the mean of the return on the

risky asset, as in Peijnenburg (2018). Formally, while equation (6) accurately reflects

the return an agent would receive on a given portfolio invested in period t, the agent

considers a set of models under which returns are distorted away from this by an amount

νj,t:

Rp
j,t+1 = Rf + (Rt+1 −Rf + σ1νj,t)αj,t (14)

where σ1 is the standard deviation of Rt+1:

σ1 = exp(µ)
(
exp(σ2)− 1

) 1
2 (15)

To model the agent’s aversion to ambiguity, we follow Hansen and Sargent (2008) and

rewrite their dynamic programming problem as:

V θ
j (wj) = max

cj,t,αj,t

min
νj,t

{
c1−γ
j,t

1− γ
+ βϕj

[
1

2θ
ν2
j,t + Ej,t[V

θ
j+1(wj+1)]

]}
(16)

subject to wJ ≥ 0, the budget constraint (4), and the distorted returns process (14).

That is, the agent makes consumption and portfolio decisions based on a distorted

law of motion for their assets, in which returns on the risky asset are systematically

biased towards models for the risky return which deliver low continuation values in their

optimization problem. In this way they make choices which are robust to their uncertainty

over the process for risky asset returns.
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However, the agent does not entertain an infinite set of models. Rather, they choose

the distortion in the returns process behind their consumption and portfolio choices

so that it minimizes expected utility, plus a cost of 1
2θ
ν2
j,t. Intuitively, the parameter θ

controls the agent’s preference for robustness: larger values of θ imply the agent entertains

larger deviations from the true returns process in equation (6). For a detailed discussion

of this approach to modeling ambiguity aversion, see Hansen and Sargent (2008) and the

survey in Ilut and Schneider (2022).

This formulation means that agents consider larger distortions if their value functions

are more sensitive to model misspecification; in these cases the need for robustness is

greater. Since value functions differ by age, the distortions to beliefs about risky asset

returns due to ambiguity aversion will also vary across the life-cycle. Intuitively, although

all agents share the same preference for robustness (they have the same θ), agents of dif-

ferent ages have different levels of exposure to changes in the return on risky assets.

Optimal Belief Distortion: We begin by solving the inner minimization problem, in which

the agent chooses how much to distort their return expectations towards the ‘worst case

scenario’. In this, the following result is helpful.

Lemma 1 Taking the same log-linear approximation approach as in (7) to the distorted

returns in (14), we can write

Ej,t[V
θ
j+1(wj+1)] ≈ Ej,t[V

θ
j+1(w

∗
j+1)] +

Aj+1

1− γ
(wj − cj,t)

1−γ(1− γ)σαj,tνj,t (17)

where

w∗
j+1 = (wj − cj,t)[R

f + αj,t(Rt+1 −Rf )] (18)

is the next-period wealth the agent would achieve under the central model without return

distortions.

Proof. Appendix A

Substituting this into the Bellman equation (16), it is then straightforward to obtain

the first order condition for the inner minimization problem:

νj,t = −θAj+1(wj − cj,t)
1−γσαj,t (19)

Consumption and Portfolio Allocation: Substituting the optimal distortion (19) into

equation (16), the household chooses consumption and the share of savings invested
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in risky assets to solve:

V θ
j (wj) = max

cj,t,αj,t

{
c1−γ
j,t

1− γ
+ βϕj

[
−1

2
θA2

j+1(wj − cj,t)
2−2γσ2α2

j,t + Ej,t[V
θ
j+1(w

0
j+1)]

]}
(20)

Proposition 2 characterizes the solution.

Proposition 2 The value function takes the form:

V θ
j (wj) = Aj

w1−γ
j

1− γ
+ θBj

w
2(1−γ)
j

2(1− γ)
+O(θ2) (21)

where Bj is an age-dependent combination of model parameters, defined in Appendix A.

In the approximate solution where we drop terms in θ2, optimal portfolio choice and

consumption are given by:

αj,t = α∗ + θα∗w1−γ
j Ωαj (22)

cj,t = c∗j,t + θw2−γ
j Ωcj (23)

where α∗, c∗j,t are the solutions without ambiguity defined in Proposition 1, and Ωαj,Ωcj

are functions of bj+1, Aj+1, Bj+1, defined in Appendix A.

Proof. Appendix A

With θ = 0, we therefore return to the standard expected-utility solution (Proposition

1). With some ambiguity aversion (θ > 0), however, both portfolio and consumption

decisions shift away from this solution. Importantly, the effect of ambiguity aversion

depends on both the agent’s wealth and, through Ωαj,Ωcj, their expected future lifespan.

Intuitively, this occurs because agents of different ages are differentially exposed to the

return on risky assets, and so opt for different levels of belief distortion in response to their

ambiguity aversion. As the resulting distortions to beliefs, consumption, and portfolio

shares are generally nonlinear functions of wealth and demographics, we now turn to a

simple special case to explore the mechanisms analytically, before returning to this full

model in Section 4.

3 Results with Three-Period Lifespans

We now explore the mechanisms relating aging, life expectancy, and ambiguity to portfolio

decisions by restricting the model to J = 2. Agents therefore live for a maximum of three

periods: young (j = 0), middle aged (j = 1), and old (j = 2). Furthermore, we assume

that ϕ0 = 1, so all agents survive at least to middle age. In this simple context, population
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aging therefore only occurs through an increase in ϕ1, the probability of surviving to old

age.

3.1 Consumption and Portfolio Allocation: No Ambiguity Case

Consider an agent born in period t. To understand the effects of ambiguity aversion in

this environment, it is helpful to first examine the forces that drive consumption and

saving in the baseline model without ambiguity. In this case, the portfolio share in risky

assets is constant, as in equation (12). Applying the remaining elements of Proposition

1, we obtain closed-form solutions for consumption in each period of the agent’s life.

Proposition 3 An agent with ϕ0 = 1, ϕ2 = 0 and initial wealth w0 chooses consumption

when young and middle-aged according to:

c0,t =
b̃2

ϕ
1
γ

1 + b̃(1 + b̃)
w0 (24)

c1,t+1 =
b̃

ϕ
1
γ

1 + b̃(1 + b̃)
Rp

0,t+1w0 (25)

where b̃ is a strictly positive combination of age-independent parameters:

b̃ =

[
β

(
1 + (1− γ)rf +

1

2

(1− γ)

γ
(α∗)2

)]− 1
γ

(26)

Conditional on surviving to old age, they then have:

c2,t+2 =
ϕ

1
γ

1

ϕ
1
γ

1 + b̃(1 + b̃)
Rp

0,t+1R
p
1,t+2w0 (27)

Proof. Appendix A

As the probability of surviving to old age (ϕ1) increases, the incentive to save for

consumption in old age rises, so agents consume less both when they are young and when

they are middle aged (c0,t and c1,t+1 decrease). For agents that do survive to old age, a

greater ϕ1 implies higher consumption c2,t+2, due to the extra savings built up earlier in

life. Together, these results imply that savings are depleted less quickly through the life

cycle if average life expectancies are longer.11

These patterns are displayed in Figure 1, which plots the paths of consumption and

saving over the life-cycle for three different values of ϕ1. When the probability of sur-

11This is consistent with Foltyn and Olsson (2021), who find that individuals with longer subjective
life expectancies accumulate more wealth over their life-cycle than those who expect to die earlier.
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viving to old age is low, agents consume a lot in their youth and middle age. If they do

survive to old age, they therefore experience a large consumption drop. With a greater

survival probability, young and middle-aged consumption is lower, and the subsequent

consumption fall in old age is lower.12

Figure 1: Consumption and saving paths with no ambiguity.

Note: Plots constructed using J = 2, µ = 0.06, rf = 0.045, σ = 0.1, γ = 3, β = 0.99, ϕ1 = 0.2, 0.6, 1,
w0 = 2, and risky asset returns set to their expected level every period. This therefore abstracts from
return shocks.

3.2 Ambiguity Aversion

We now add ambiguity aversion back into the model. The key element of this model is how

the distortion in return expectations due to ambiguity aversion varies with age, wealth,

and the probability of surviving to old age. These distortions are given in Proposition 4.

Proposition 4 The optimal distortion in beliefs about risky asset returns for an agent

with wealth wt and age j is:

ν0,t = − θσα∗(ϕ
1
γ

1 + b̃)

b̃γ(ϕ
1
γ

1 + b̃+ b̃2)1−γ

w1−γ
0 (28)

ν1,t = − θσα∗ϕ
1−γ
γ

1

(ϕ
1
γ

1 + b̃)1−γ

w1−γ
1 (29)

ν2,t = 0 (30)

12With ϕ1 = 1 the consumption path is slightly increasing over time here due to precautionary saving.
c2,t+2 > c1,t+1 in the model whenever ϕ1 > (b̃/Rp

1,t+2)
γ , which is close to 1 for most calibrations.
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Proof. Appendix A

To understand the implications of these distortions, we first compare agents with the

same wealth but different ages, to isolate the effects of age and survival probabilities. We

then go on to analyse the interactions with varying wealth.

3.2.1 Age Effects

First, Proposition 4 implies that old agents (j = 2) do not distort their beliefs at all (30).

This is because they save nothing, and so have no exposure to asset returns. There is

no need for them to make their decisions robust to doubts about average asset returns.

Similarly, note that if ϕ1 = 0 then a middle-aged agent sets ν1,t = 0, for the same reason:

they will die for certain at the end of the period, so they do not save and are not exposed

to ambiguity. In all other cases νj,t < 0, so the agents distort their beliefs towards lower

returns on the risky asset.

Corollary 1 shows a further equivalence between two other extreme special cases:

Corollary 1 Let νj,t(ϕ) be the distortion chosen by an agent of age j facing a survival

probability of ϕ1 = ϕ. Then, if w0 = w1:

ν0,t(0) = ν1,t(1) (31)

Proof. Appendix A

That is, a young agent who will die for certain after middle age distorts beliefs in the

same way as a middle-aged agent who will survive to old age for certain. In both cases,

the agent knows they have one more period of consumption, and so behavior is the same

for each. This highlights that life expectancy, rather than age, is the critical factor in how

ambiguity aversion affects beliefs in this environment.

Second, Proposition 4 also implies that changes in ϕ1 affect the belief distortions

among young and middle-aged agents away from these edge cases.

Corollary 2 As ϕ1 changes, then holding wealth constant the optimal belief distortions

of young agents are such that:

∂ν0,t
∂ϕ1

< 0 (32)
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Holding wealth constant, the distortions of middle-aged agents are such that:

∂ν1,t
∂ϕ1


< 0 if γ < 1

= 0 if γ = 1

> 0 if γ > 1

(33)

Proof. Appendix A

As the probability of surviving to old age rises, young households distort their beliefs

more strongly, becoming more pessimistic about equity returns. If the EIS is greater

than 1 (γ < 1), middle-aged households do the same. However, if the EIS is less than 1

(γ > 1), they decrease the magnitude of their distortion.

This divergence is at the heart of our mechanism: in the empirically plausible case

with γ > 1, as life expectancy rises the young get more pessimistic about equity returns,

while older agents get more optimistic. The effect is shown in Figure 2.

Figure 2: Belief distortions as ϕ1 varies.

Note: Plots constructed using J = 2, θ = 0.045, µ = 0.06, rf = 0.045, σ = 0.1, γ = 3, β = 0.99,
ϕ1 ∈ (0, 1], w0 = w1 = 2, and risky asset returns set to their expected level every period. This therefore
abstracts from the effect of return shocks.

At ϕ1 close to 0, young households are less pessimistic than middle-aged households.

As the survival probability grows, these positions reverse.

To understand the mechanisms driving the divergent responses to increasing longevity,

we return to the first order condition for the inner minimization in equation (16). The

agent chooses the degree to which they distort their return expectations by balancing the

marginal damage to expected continuation values with the marginal penalty to consider-
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ing a larger distortion:

∂

∂νj,t

{
1

2θ
ν2
j,t + Ej,t[V

θ
j+1(wj+1)]

}
= 0 (34)

Equation (19) is then simply the result of combining this with Lemma 1 and rear-

ranging. However, we can alternatively write this condition as:

νj,t = −θ
∂Ej,t[V

θ
j+1(wj+1)]

∂νj,t
(35)

≈ −θσα∗ (wj − cj,t)︸ ︷︷ ︸
Wealth Channel

·
∂Ej,t[V

θ
j+1(wj+1)]

∂wj+1︸ ︷︷ ︸
Marginal Utility Channel

(36)

where the second line uses the same approximation as in Lemma 1.

The distortion is set proportional to the sensitivity of expected continuation values to

asset returns. Intuitively, the more exposed the agent is to changes in risky asset returns,

the more they wish to make their decisions robust to ambiguity over those returns. That

sensitivity can be broken down into two channels: the wealth channel, and the marginal

utility channel.

The wealth channel operates because when an agent saves more for the next period,

their next-period wealth is more strongly affected by asset returns. In other words, they

have more skin in the game. As discussed in Section 3.1, when ϕ1 increases both young

and middle-age agents increase their saving.13 For both young and middle-age agents,

this channel therefore implies greater belief distortions when ϕ1 rises.

The marginal utility channel operates because a given decrease in asset returns will

have a larger effect on utility for an agent with a large marginal utility of wealth in the

following period. Through a standard envelope theorem, the marginal utility of wealth

in period t+ 1 is equal to the marginal utility of consumption in t+ 1. Since our model

features a diminishing marginal utility of consumption, this channel will be more powerful

when next-period consumption is expected to be low.

This channel is what drives the divergence in beliefs across cohorts. Recall from

Section 3.1 that, as ϕ1 increases, the consumption of middle-aged agents falls, while the

consumption of old agents rises. Agents who are currently young therefore expect to have

a greater marginal utility of wealth in the following period, when they will be middle-

aged. An increase in ϕ1 makes them more sensitive to changes in wealth, increasing the

strength of the marginal utility channel. In contrast, current middle-aged agents expect

13The paths of consumption and saving remain qualitatively unchanged with the introduction of am-
biguity aversion, as we typically consider small values of θ. Sufficient conditions for this result, and a
numerical example, are provided in Appendix B.
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to have more wealth in future, and so a lower marginal utility, implying a smaller marginal

utility channel.

For a young agent, both the wealth and marginal utility channels therefore imply that

they become more pessimistic when ϕ1 rises. For a middle-aged agent, the channels act

in opposite directions. To see which dominates, note that for a middle-aged agent we

obtain:14

∂E1,t[V
θ
2 (w2)]

∂w2

∝ (w1 − c1,t)
−γ (37)

Substituting this into equation 36 implies:

ν1,t ∝ −θσα∗(w1 − c1,t)
1−γ (38)

For a middle-aged agent, an increase in ϕ1 implies a rise in wj − cj,t. With γ < 1,

the wealth channel dominates, and middle-aged agents therefore increase the magnitude

of their belief distortions when survival probabilities rise (νj,t becomes more negative).

In the empirically plausible case with γ > 1, however, the marginal utility channel dom-

inates, and middle-age agents become more optimistic about returns. With log utility

(γ = 1) the effects cancel out and middle-aged agents do not adjust ν1,t with ϕ1.

Portfolio Allocation: Figure 3 plots the share of agent portfolios invested in the risky

asset as ϕ1 changes, for the same parameters as Figure 2. Both young and middle-aged

agents allocate lower shares of their wealth to risky assets than they would in the absence

of ambiguity, as in other models in the literature (Garlappi et al., 2007; Campanale,

2011) and consistent with empirical evidence (Dimmock et al., 2016). This is a direct

consequence of Proposition 4: the belief distortions due to ambiguity aversion imply the

agent acts as if the risky asset has a lower expected return than its true mean, and so

invests less in that asset than they would in the absence of ambiguity. For ϕ1 > 0.2 in

this calibration, young agents distort their return beliefs more in response to ambiguity

than middle-aged agents, so their risky asset share is correspondingly lower. We find the

same qualitative pattern in the quantitative illustration in Section 4.

The changes in risky asset shares as the population ages (ϕ1 increases) follow from

Corollary 2. As ϕ1 increases along the x-axis, middle-aged agents reduce the distortions

in their beliefs, increasing their risky asset share towards the benchmark share without

ambiguity (α∗). In contrast, young households increase their distortions, and move further

from this benchmark level.

Note that the models in Campanale (2011) and Peijnenburg (2018) also feature risky

14This follows from Proposition 2, and the fact that A2 = 1.
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Figure 3: Risky asset shares without ambiguity (αBM ), and with ambiguity for young (α0)
and middle-aged (α1) agents, as ϕ1 varies.

Note: Plots constructed using J = 2, θ = 0.045, µ = 0.06, rf = 0.045, σ = 0.1, γ = 3, β = 0.99,
ϕ1 ∈ (0, 1], w0 = w1 = 2, and risky asset returns set to their expected level every period. This therefore
abstracts from the effect of return shocks.

asset shares that increase with age (α1,t > α0,t). However, the mechanisms in those

papers are different from ours: in both, agents learn over time from observed realisations

of asset returns, gradually reducing the set of models they are willing to consider. In our

framework, that would entail a fall in θ as agents progress from young to middle-aged,

independently of survival probabilities. In contrast, we keep θ constant, but allow the

optimal distortion to vary with agent exposure to asset returns. The effect of survival

probabilities on the age-profile of asset shares, through the wealth and marginal utility

channels, is therefore unique to our mechanism.

3.2.2 Wealth Effects

The first order condition for belief distortions in equation (36) highlights that, just as

with age, the effects of an increase in wealth depend on the wealth and marginal utility

channels.

With an increase in wealth, these channels act in opposite directions. The wealth

channel implies larger belief distortions for wealthier households, as they save more, so

have more exposure to asset returns. The marginal utility channel implies the opposite:

wealthier households have smaller belief distortions, because their continuation values

are less sensitive to marginal changes in future wealth. As with the effect of survival

probabilities on middle-aged agents, which channel dominates depends on whether the
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EIS is greater or less than 1.

Corollary 3 As wj changes, then optimal belief distortions of young and middle-aged

agents are such that for j = 0, 1:

∂νj,t
∂wj


< 0 if γ < 1

= 0 if γ = 1

> 0 if γ > 1

(39)

Proof. Appendix A

Under our preferred calibrations (γ > 1), being wealthier causes agents to become

more optimistic about asset returns. As a result, wealthier agents invest a greater share

of their wealth in the risky asset. These patterns are shown in Figure 4. Although our

model does not feature non-participation, the direction of this effect is consistent with

evidence in Briggs et al. (2020) that exogenous increases in wealth increase the probability

that households invest in equities.

Figure 4: Belief distortions and risky asset shares vary with wealth.

Note: Plots constructed using J = 2, θ = 0.045, µ = 0.06, rf = 0.045, σ = 0.1, γ = 3, β = 0.99,
ϕ1 = 0.7, w0 and w1 vary from 1 to 5, and risky asset returns set to their expected level every period.
This therefore abstracts from the effect of return shocks.

Interactions with Age Effects: As well as directly affecting belief distortions as in Corollary

3, an agent’s wealth can affect the strength of the age effects on beliefs studied in Section

3.2.1. In our preferred parameter region of γ > 1, when wealth is higher, age effects are

smaller in magnitude, for agents of all ages.
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Corollary 4 As wj changes, the age effects on optimal belief distortions are such that

for j = 0, 1:

sign

{
∂

∂wj

(
∂νj
∂ϕ1

)}
=


sign

{
∂νj
∂ϕ1

}
if γ < 1

0 if γ = 1

−sign

{
∂νj
∂ϕ1

}
if γ > 1

(40)

This implies that if γ > 1, the effect of ϕ1 on optimal belief distortions decreases in

magnitude as wj increases.

Proof. Appendix A

Intuitively, at high levels of wealth, future marginal utility is less sensitive to changes

in returns, and so the marginal utility channel is weakened. When γ > 1, the marginal

utility channel is the dominant channel determining how belief distortions νj,t change

with ϕ1 at all ages. Weakening that channel therefore weakens the effects of ϕ1 on beliefs.

3.3 Intergenerational Inequality

We now use the results developed above to analyse the impacts of increased longevity

through ambiguity aversion. The first implication we study is on intergenerational wealth

inequality.

Using equation 8, we can express the ratio between wealth at ages j + 1 and j as:

wj+1

wj

=

(
1− cj

wj

)
exp

(
rf + αj,t(rt+1 − rf ) +

1

2
σ2αj,t(1− αj,t)

)
(41)

Expanding out cj and αj using Proposition 2, this becomes:

wj+1

wj

=

(
1

1 + bj+1

− θw1−γ
j Ωc,j

)
exp

(
rf + α∗(rt+1 − rf ) +

1

2
σ2α∗(1− α∗)

+ θα∗w1−γ
j Ωα,j

[
rt+1 − rf +

1

2
σ2(1− 2α∗ − θα∗w1−γ

j Ωα,j)

])
(42)

Finally, using the definition of bj+1 for j = {0, 1} (Appendix A) note that:

1

1 + b1
=

ϕ
1
γ

1 + b̃

ϕ
1
γ

1 + 2b̃
(43)

1

1 + b2
=

ϕ
1
γ

1

ϕ
1
γ

1 + b̃
(44)
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both of which are strictly increasing in ϕ1.

In the absence of ambiguity (θ = 0), only the first term in equation 42 changes with ϕ1.

As the survival probability rises, agents save more for the future, so middle-aged agents

become wealthier relative to young agents, and similarly old agents become wealthier

relative to middle-aged agents.

Ambiguity adds two further channels to this change in wealth across the life-cycle.

First, a rise in ϕ1 affects agent portfolio choices, and so affects average returns. This

generates the terms in square brackets in equation 42. In Section 3.2.1 we showed that

rising ϕ1 has opposing effects on the risky asset shares of young and middle-aged agents in

the empirically plausible case of γ > 1. Young agents reduce α0, which reduces the wealth

of the middle-aged relative to the young. Middle-aged agents increase α1, increasing the

relative wealth of the old. Through this channel, an aging population leads to a greater

wealth concentration among older households.

Second, ambiguity also affects the amount saved by each agent, through the term

−θw1−γ
j Ωc,j. For both young and middle-aged agents, Ωc,j varies with ϕ1, and for middle-

aged agents so does wj. In Appendix B we show that this term is potentially non-

monotonic in ϕ1, so it has an ambiguous effect on wealth inequality. However, in the

simple calibration used throughout this section, and in the quantitative model in Section

4, this effect is negligible relative to the other channels.15

3.4 Aggregation

Next, we study how aging affects the composition of aggregate asset demand.

All agents within a cohort are identical. The aggregate demand for safe and risky

assets is therefore given by:

AD(safe) = (1− α0)(w0 − c0) + (1− α1)(w1 − c1) (45)

AD(risky) = α0(w0 − c0) + α1(w1 − c1) (46)

where we have used the result that old agents do not save in either asset. Note that

this implies the composition effects of aging, as studied in e.g. Auclert et al. (2021), are

absent here: the age-composition of asset market participants is constant as ϕ1 rises. This

simplification allows us to focus on the novel channels introduced by ambiguity aversion

here. We relax this in Section 4.

15Specifically, with the calibration used in Figure 2, an increase in ϕ1 from 0.2 to 0.8 implies that w2/w1

and w1/w0 increase by 31.02% and 7.48% respectively. The change in consumption due to ambiguity
accounts for 0.014% and 0.019% of those changes.

21



Recall that if there is no ambiguity aversion (θ = 0), risky asset shares αj are constant,

and both young and middle-aged agents cut consumption when ϕ1 rises (Proposition 3).

As a result, the aggregate demand for both types of asset rises, as longer life expectancy

encourages greater saving for old age.

In the case with ambiguity aversion, the deviation of αj and cj from the no-ambiguity

benchmark is proportional to the degree of ambiguity aversion θ (Proposition 2). For

small θ, we therefore maintain the result that AD(safe) and AD(risky) rise with ϕ1, as

in the no-ambiguity benchmark.

Ambiguity aversion does, however, affect the speed at which each aggregate asset

demand rises, which therefore affects the composition of asset demand as the popula-

tion ages. This is displayed in equation 47, which gives the population analogue of the

individual-level risky share αj.

AD(risky)

AD(safe) + AD(risky)
=

α0(w0 − c0) + α1(w1 − c1)

w0 − c0 + w1 − c1
(47)

Substituting out for the individual risky asset shares αj using equation 22, this be-

comes:

AD(risky)

AD(safe) + AD(risky)
= α∗ + θα∗

(
Ωα,0w

1−γ
0 (w0 − c0) + Ωα,1w

1−γ
1 (w1 − c1)

w0 − c0 + w1 − c1

)
(48)

In the absence of ambiguity, the relative demand for risky assets is a constant (α∗).

However, with ambiguity (θ > 0), demand for safe and risky assets are no longer in fixed

proportions, and the relative demand for each asset changes with the survival probability.

These relative demand changes are shown in Figure 5. The no-ambiguity relative

demand is constant at α∗, which with this calibration is equal to 0.5. As in e.g. Garlappi

et al. (2007), ambiguity aversion therefore reduces the relative demand for risky assets

below this level. The contribution of our model is that we can ask how that relative

demand changes with survival rates. As ϕ1 rises, the demand for risky assets relative to

safe assets follows a hump-shape: it rises, reaches a peak, then falls.

This hump-shape in relative risky asset demand occurs because young and middle-

aged agents shift their belief distortions in different directions as ϕ1 increases, as shown in

Section 3.2.1. Corollary 2 shows that as the survival probability rises, the young become

more pessimistic about asset returns, while the middle-aged become more optimistic. As

a result, young agents decrease their relative demand for risky assets, while middle-aged

agents increase their relative demand.

When the probability of surviving to old age is low, young households save only a
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Figure 5: Relative asset demand AD(risky)
AD(safe)+AD(risky) varies with ϕ1.

Note: Plots constructed using J = 2, µ = 0.06, rf = 0.045, σ = 0.1, θ = 0.045, γ = 3, β = 0.99,
ϕ1 ∈ (0, 1], w0 = 1, and risky asset returns set to their expected level every period. This therefore
abstracts from the effect of return shocks.

small fraction of their endowment (Proposition 3, extended to the ambiguity case in

Appendix B). As a result, when they become middle-aged, they have little wealth: w1 is

low relative to w0. Corollary 4 then implies that any small increase in ϕ1 has a stronger

effect on the beliefs of middle-aged than young agents. Initially, the middle-aged agents

react most strongly to ϕ1, and relative risky asset demand rises.

However, as ϕ1 rises, young agents increase their saving, and these mechanisms work

in reverse. Wealth w1 rises, and so age effects become weaker for middle-aged agents,

ultimately becoming smaller than the effects on young agents. At high ϕ1, further aging

of the population therefore implies a fall in relative risky asset demand.

Finally, note that relative risky asset demand is also affected by a composition channel.

As ϕ1 rises, w1 rises, which means that middle-aged agents account for a greater share

of aggregate saving. Since for most values of ϕ1 middle-aged agents are more optimistic

than young agents (Figure 2), this also causes the aggregate relative risky asset demand

to rise with ϕ1, shifting the peak in Figure 5 to the right.

3.5 Endogenous Equity Premium

So far, we have considered a small open economy aging alone. In that case, the variation

in relative demand for safe and risky assets shown in Figure 5 does not affect returns or

asset prices. However, in a closed economy, or indeed in a world where all countries are

aging simultaneously, this will no longer be true.
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We therefore extend the model here, and instead assume that the relative supply of

safe and risky assets is fixed. This allows us to study the effects of aging on the equity

premium µ − rf , as this must adjust to ensure that asset markets clear. The equity

premium is particularly of interest because it controls how much heterogeneity there is

between the wealth accumulation of agents with different beliefs. It is therefore central

to how our mechanisms will affect intergenerational inequality.

Specifically, let St(safe) and St(risky) denote the supply of safe and risky assets in

period t. The relative supply of risky assets is assumed to be fixed at S̄:

St(risky)

St(safe) + St(risky)
= S̄ (49)

For asset markets to clear, we therefore require:16

ADt(risky)

ADt(safe) + ADt(risky)
= S̄ (50)

This particular assumption on asset supply is useful here, because it implies that if

there is no ambiguity aversion, the solution is trivial. From equation 48, if θ = 0 then

the relative demand for risky assets is constant at α∗, which itself is directly proportional

to the equity premium (equation 12). In this case, the equilibrium equity premium is

therefore a constant, unaffected by changes in survival probabilities:

(µ− rf |θ = 0) = γσ2S̄ (51)

As a result, any dependence of the equity premium on ϕ1 must come through ambigu-

ity aversion. In this way, our equity premium analysis is similar in spirit to our analysis of

the small open economy above, in which case individual portfolio choices are independent

of ϕ1 unless there is some ambiguity over risky returns.

To analyse the equity premium in the case with ambiguity, it is useful to first note

that relative aggregate demand increases monotonically in the equity premium.

Lemma 2 For any θ < θ∗:

∂

∂µ

(
ADt(risky)

ADt(safe) + ADt(risky)

)
> 0 (52)

∂

∂rf

(
ADt(risky)

ADt(safe) + ADt(risky)

)
< 0 (53)

16This condition would still be necessary, though not sufficient, for asset market clearing in a model
with fixed supplies of both assets individually.
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where θ∗ > 0 is a threshold defined in Appendix A.

Proof. Appendix A

This is intuitive: as in the case without ambiguity, if the equity premium rises, then

the expected return on risky assets rises relative to safe assets, rendering them more

attractive to investors. Whether the equity premium rises because µ rises or rf falls, the

relative demand for risky assets therefore rises.

From this we derive two implications. First, Proposition 4 implies that for all values

of ϕ1, young and middle-aged agents distort their beliefs towards (weakly) lower risky

asset returns. This is why ambiguity reduces the relative demand for risky assets, as

shown in Figure 5. To offset this and ensure market clearing, the equity premium must

therefore be higher than if there was no ambiguity, as in other models in this literature

(e.g. Dimmock et al., 2016).

Second, the analysis in the previous sections highlights that individual and aggregate

portfolio choices change with ϕ1, implying that the equity premium will change as survival

probabilities rise. Specifically, the equity premium is U-shaped in ϕ1.

The intuition for this result follows directly from the discussion in Section 3.4. As ϕ1

rises from a low level, then the relative aggregate demand for risky assets rises, as middle-

aged agents become more optimistic about risky returns. This pushes the equity premium

down, to clear asset markets. As ϕ1 continues to rise, the relative aggregate demand for

risky assets begins to fall, as increasing pessimism from young agents dominates the

optimism from the middle-aged. That in turn implies the equity premium rises.

Interestingly, although the model is extremely simple, this is consistent with qualita-

tive patterns in equity premia in the last 75 years. Since 1950, developed economies have

experienced substantial rises in life expectancy. Over the same period, Kuvshinov and

Zimmermann (2020) document that equity premia in developed economies have followed

a U-shape, first falling, and then rising again after 1990.

4 Quantitative Illustration

We now return to the model in Section 2. We calibrate the model to survival probabilities,

and the wealth distribution, in the US in 2019. The portfolio choices generated from the

model match the age-profile of risky asset shares in the data. We then use the model

to examine the effect of demographic change on portfolios in the coming decades. To

do this, we compare the 2019 calibration with a counterfactual using projected survival

probabilities for 2100. Even holding the distribution of wealth fixed, changes in life

expectancy imply non-trivial changes in the age profile of portfolio composition.
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4.1 Calibration

We calibrate the model such that one period is one year. First, we set some parameters

to standard values in macroeconomics and finance, as displayed in Table 1.17

Table 1: Calibration block 1.

Parameter Description Value Source
β Discount factor 0.96 Standard
γ Inverse EIS 1.8 Crump et al. (2022)
rf Risk-free rate 0.023 Cocco et al. (2005)
µ Expected equity return 0.057 Kuvshinov and Zimmermann (2020)
σ Std. deviation equity returns 0.18 Viceira (2001)

Second, we calibrate the survival probabilities using age-specific mortality rates in

the US in 2019 reported by the US Office of the Chief Actuary at the Social Security

Administration. This mortality data is representative for the US population. We specify

the survival probability ϕj as one minus the mortality rate for people of age j. We also

set the initial age to j = 30, and the maximum possible lifespan to J = 109: this is the

first age in the data at which the annual mortality rate exceeded 50%.

The third step is to calibrate wealth holdings. We use the 2019 wave of the Survey

of Consumer Finances (SCF) to obtain median financial assets by age in 2019. We use

financial assets, rather than net worth, to be consistent with the commonly-reported risky

asset shares from the SCF, which typically involve risky assets as a share of financial assets

(see e.g. Chang et al., 2018).18 We then set the wealth of each agent in period t to the

median financial assets for their age group from the data. Formally, agents still behave

as set out in Section 2. We simply assign each agent an unanticipated lump sum transfer

at the start of each period such that wealth in the model matches that in the SCF.

This approach means that we are taking the exact age-profile of wealth in 2019 as an

input to the model, rather than allowing it to emerge endogenously in equilibrium. The

aim is to provide a quantification of the strength of the channels we study at that single

point in time. As with the calibration of ϕj, we assign all households in a given age range

the same wealth. Full details of this data and calibration are in Appendix C.1.

Finally, the only parameter left to calibrate is the preference for robustness parameter

θ. Several papers have used ambiguity aversion to explain why risky asset shares are

typically lower than in standard models (see e.g. Guidolin and Rinaldi, 2013, for a review

17The expected equity return is computed using the calibrated rf and the average US equity premium
over 1990-2015, as documented in Kuvshinov and Zimmermann (2020).

18There are only a small number of SCF participants above the age of 80, so we do not have reliable
wealth data for households at those ages. Since we do not conduct any aggregation exercises in this
section, this does not affect the results below. We simply cut off all age-profile plots at age 80, so this
lack of data for the oldest households has no effect on any of the figures.
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of the early literature). We therefore choose θ to target the average portfolio share in

risky assets across all ages in the 2019 SCF (details in Appendix C.1).19 We do not target

any aspect of how that risky asset share varies across ages.

Targeting the average risky share implies a θ = 0.008. In Appendix C.2 we show that

this implies reasonable values of detection error probabilities, which are commonly used

to measure the strength of ambiguity aversion in quantitative settings.

4.2 Age Profiles of Portfolio Allocations

Figure 6 plots the risky asset share for agents of different ages in the calibrated model,

alongside the empirical age profile from the SCF. The model replicates the increasing age

profile of risky asset shares, and the fact this profile is steeper at younger ages. This is

despite the simplicity of the model, and the fact that this profile was not targeted at all

in the calibration.

Figure 6: Model-generated vs. empirical risky asset shares in 2019.

Note: The solid line is constructed using the model, with calibration described in Section 4.1 and
Appendix C.1. Each point is the mid-point of a ten-year age range. The dashed line plots the
conditional risky asset share in the 2019 SCF. This is defined as the share of risky assets in total
financial assets among households who participate in risky asset markets.

Of course, the empirical age-profile shown is a snapshot of a particular point in time,

and so conflates age, period, and cohort effects. A large literature attempts to disentangle

the pure age effect using estimated models and a range of identifying assumptions (see

19Note that in the solution for our object of interest αj,t (equation 22), wealth and θ enter as the

product θw1−γ
j,t . Since θ is calibrated to match the average αj,t in the data, the units of wealth used in

the calibration become irrelevant for this variable. Replacing wj,t with Λwj,t for some constant Λ > 0
would imply the calibrated θ would become Λγ−1θ, leaving all variation in αj,t unchanged.
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Gomes and Smirnova, 2021, for a recent example). However, this is not our focus. A

key part of our mechanism is that changes in life expectancy affect portfolio decisions,

through changes in ambiguity-driven belief distortions. Since life expectancy changes

over time and by cohort, we do not want to strip out these effects. Indeed, exploring how

this profile might change over time is the purpose of Section 4.3.

In the model, the large initial rise in the risky asset share between the ages of 30 and

40 occurs largely because wealth increases substantially in this part of the population:

the median wealth for people aged 40 is more than 2.5 times larger than those aged 30

in the SCF data. The wealth effect (Section 3.2.2) therefore implies that 40-year-olds

are substantially more optimistic about risky asset returns than 30-year-olds, and invest

more in risky assets as a result.

However, this rise in wealth is not the only reason for agents to become more optimistic

as they age. Figure 7 shows how αj,t would change over the agent’s life cycle if (a) survival

probabilities were constant for all age groups, or (b) wealth was constant for all age groups.

In the first case, wealth varies as in the baseline calibration (Figure 6), but at each age

survival probabilities are set as if the agent is still 30 years old. In the second, age and

survival probabilities vary as in the baseline calibration, but wealth is held at that of the

median 30-year-old. Since αj,t is a non-linear combination of wealth and age effects, this

is not a strict decomposition of the two channels. Rather, these alternative age profiles

simply show the strength of the wealth and age effects in isolation. Although the wealth

effect alone produces the same qualitative age profile of αj,t as the full model, without age

effects that profile is substantially less steep. Along with the increase in wealth, agents

also therefore get more optimistic about risky asset returns because they get older.

4.3 Projecting Asset Demand

We showed above that life expectancy is a key driver of the age profile of portfolio choices.

As populations age, survival probabilities increase particularly for older cohorts. In our

model, this leads to differential changes in the portfolio choices of different age groups,

with implications for inequality within and between cohorts.

To explore this dependence on demographics, we take the calibrated model and replace

the 2019 survival rates with demographic projections for the year 2100 in the US.20 As

well as ϕj, we also re-calibrate the maximum lifespan J using the same approach as

before: we find the first age at which the annual mortality rate is expected to exceed

50%, which for 2100 implies J = 117. These projections come from the US Office of

20A related exercise is performed in Auclert et al. (2021), which takes an OLG model and forecasts
future wealth-to-income ratios by holding fixed the average wealth and income of each age group, but
varying the proportions of households of each age according to UN projections.
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Figure 7: Model-generated risky asset shares in 2019, comparison to wealth and age effects in
isolation.

Note: Plots constructed using the calibration and data described in Section 4.1 and Appendix C.1. Each
point is the mid-point of a ten-year age range. To construct the ‘wealth effect’ line, the agent’s age j is
held fixed at 30, while wj,t is varied to match median financial assets for each age group. To construct
the ‘age effect’ line, again the main calibration is used, except wj,t is set to the median wealth of a
30-year-old for agents of all ages j.

the Chief Actuary, who predict survival probabilities rising substantially, particularly for

the oldest age groups.21 This exercise therefore gives a projection of the direct effect of

extending life expectancy on portfolio choices, holding everything else fixed.

Figure 8a shows the results, plotting the model-implied age profile of risky asset shares

in 2019 and 2100, for households at the median wealth for their age group (as in Figures

6 and 7). Solid lines plot αj,2019 and dashed lines plot the equivalent αj,2100. The increase

in life expectancy by 2100 causes young households to invest less in risky assets, as they

distort their beliefs more strongly towards low risky returns. For older households, return

expectations decline by less, so they become more optimistic relative to the young.22 The

age profile of risky asset shares therefore becomes steeper, in line with the results with

J = 2 (Corollary 2). Quantitatively, however, this effect is modest: the gap between the

risky asset shares of those aged 80 and 30 rises from 19.6 p.p. to 21.4 p.p., an increase of

9%.

Plausible increases in survival probabilities are therefore not large enough to cause

21For example, in 2019 the death rate among 70-year-olds in the US was
1.9%. In 2100 that is projected to fall to 1.0%. The data is available at
https://www.ssa.gov/oact/HistEst/Death/2023/DeathProbabilities2023.html

22Even 80 year-old households reduce αj,t slightly in this simulation, though households above this
age (not plotted) do increase αj,t, in line with the results in Section 3.
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Figure 8: Model-implied risky asset shares, 2019 and 2100.

(a) Median wealth (b) 20th, 50th, 80th wealth percentiles

Note: Plots constructed using the calibration and data described in Section 4.1 and Appendix C.1. Each
point is the mid-point of a ten-year age range. To construct the ‘2100’ line, the main calibration is
used, except that ϕj is replaced with projected survival probabilities for 2100, computed as described in
Appendix 4.1.

very large changes in the decisions of agents with median levels of wealth. However, this

is not true for all agents. Figure 8b again plots the age profile of αj,t in 2019 and 2100,

but for agents at the 20th and 80th percentile of the wealth distribution in each age

group. As with Figure 6 above, these percentiles of wealth are taken from the 2019 SCF.

The age profiles for less wealthy agents in particular are much more strongly affected

by demographic change. Increases in survival rates mean they start to participate in the

risky asset market later in life,23 and the share invested in risky assets drops substantially

at all ages with positive αj,t. These changes in life expectancy have stronger effects on

poorer households for the reasons identified in Corollary 4: their marginal utility of wealth

is more sensitive to changes in age. Through the same channel, increasing survival rates

have very little effect on agents at the 80th percentile of the wealth distribution.

Importantly, note that this projection only captures changes directly due to the age

effect on ambiguity aversion. If the wealth distribution or asset returns change over

time, they would further alter these results. Most notably, we found in Section 3.3 that

increased longevity causes older agents to become relatively wealthier through a number

of channels. Since return expectations become more optimistic with wealth (Corollary

3), this would further amplify the changes in belief heterogeneity across ages projected

here. In addition, if the equity premium continues its recent rising trend (as suggested in

Section 3.5), the wealth of older agents with greater risky asset shares would grow even

more rapidly relative to their younger counterparts.

23We implement the binding αj,t ≥ 0 constraint with a simple piecewise-linear solution to the model.
If the solution to the unconstrained model produces αj,t < 0, we replace it with αj,t=0.
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5 Conclusion

We develop a model in which investors face ambiguity over expected returns on risky

assets. In contrast to previous literature, we allow agents to choose the degree to which

they respond to this ambiguity optimally. With the same preferences, ambiguity aversion

causes stronger distortions to return expectations among agents whose utility is very

sensitive to risky asset returns. This implies differential effects of ambiguity on expected

returns and portfolio choices for agents with different levels of wealth, and different life

expectancies.

In particular, as life expectancy rises, younger investors become more sensitive to

rates of return, which means they distort their beliefs to be more pessimistic about the

returns to risky assets, and they invest less in those assets. In contrast, in the empirically

reasonable case where the elasticity of intertemporal substitution is less than 1, older

agents become more optimistic about risky asset returns, and allocate a greater share

of their savings to them. In this case wealthier households are also endogenously more

optimistic about risky asset returns, fueling greater savings rates and risky asset shares,

as documented in Straub (2019), Briggs et al. (2020) and others.

This model generates empirically plausible age profiles of risky asset shares in the

US. Moreover, the mechanism suggests that as the population ages and life expectancies

increase, older households will increase the share of their wealth invested in risky assets

relative to the young. Such a shift would have important implications for inequality

within and across generations. Further research could integrate these channels with

other life-cycle mechanisms in richer quantitative models, and analyse potential policy

responses.
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A Proofs

Proposition 1: Since ϕJ = 0 and there are no bequests, there is no incentive to save at

age J . As we also impose that wJ+1 ≥ 0 (5), all agents at age J choose to consume all of

their wealth. With no continuation value, the value function of these agents is:

VJ(wJ) =
w1−γ

J

1− γ
(54)

For all j < J , we now conjecture that the value function takes the same functional

form:

Vj(wj) = Aj

w1−γ
j

1− γ
(55)

for some age-dependent constant Aj. The expectation of the next-period value function
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becomes:

Ej,t[Vj+1(wj+1)] = Ej,t[Aj+1

w1−γ
j+1

1− γ
] (56)

≈ Aj+1

1− γ
(wj − cj,t)

1−γEj,t

{
exp

[
rf + αj,t(rt+1 − rf ) +

1

2
αj,t(1− αj,t)σ

2

]}1−γ

(57)

where equation (57) uses the log-linear approximation to the one-period excess return

around zero in equation (7) and Campbell (1993). Since rt+1 is normally distributed, we

can further write:

Ej,t[Vj+1(wj+1)] =
Aj+1

1− γ
(wj−cj,t)

1−γ exp

{
(1−γ)

[
rf + αj,t(µ̃− rf ) +

1

2
αj,t(1− αj,t)σ

2

]
+

1

2
(1− γ)2α2

j,tσ
2

}
(58)

Using this in equation (3) and taking first order conditions with respect to αj,t, cj,t

gives equations (12) and (13), with bj+1 as in equation (11) (noting that µ ≡ µ̃+ σ2/2).

Finally, we verify the conjecture in equation (55) for j = 0, ..., J − 1. Substituting

equation (58) into the value function (3) we have:

Aj

w1−γ
j

1− γ
=

(c∗j,t)
1−γ

1− γ

+ βϕj
Aj+1

1− γ
(wj − c∗j,t)

1−γ

{
1 + (1− γ)[rf + (µ− rf )α∗

j,t]−
1

2
γ(1− γ)σ2(α∗)2

}
(59)

where α∗, c∗j,t denote the optimal risky share and consumption from equations (12) and

(13) respectively. Since α∗ is a constant, and c∗j,t is proportional to wj, this verifies the

conjectured functional form for Vj(wj) (55). Matching coefficients, we obtain equation

(10).

Lemma 1: First conjecture that the value function takes the form:

V θ
j (wj) = Aj

w1−γ
j

1− γ
+ θBj

w
2(1−γ)
j

2(1− γ)
+O(θ2) (60)

Taking the same log-linear approximation approach as in (7) to the distorted returns in
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(14), we can write

Ej,t[V
θ
j+1(wj+1)] ≈ Aj+1

1− γ
(wj − cj,t)

1−γ{1 + (1− γ)[rf + (µ̃− rf + σνj,t)αj,t]

+
1

2
(1− γ)σ2(αj,t − γα2

j,t)}

+θ
Bj+1

2(1− γ)
(wj − cj,t)

2(1−γ){1 + 2(1− γ)[rf + (µ̃− rf + σνj,t)αj,t]

+(1− γ)σ2(αj,t + α2
j,t − 2γα2

j,t)}

= E[Vj+1(w
∗
j+1)] +

Aj+1

1− γ
(wj − cj,t)

1−γ(1− γ)σαj,tνj,t

+θ
Bj+1

2(1− γ)
(wj − cj,t)

2(1−γ)2(1− γ)σαj,tνj,t (61)

where in the first approximation we drop the term with θ2 and higher orders, and use

the approximation:

Rt+1 + σ1νj,t ≈ exp(rt+1 + σνj,t) (62)

In equation (62), σ1 is the standard deviation of Rt+1, which equals to [exp(σ2) −
1]

1
2 [exp(2µ̃+ σ2)]

1
2 . Note that θνj,t << νj,t, we can further approximate Ej,t[V

θ
j+1(wj+1)]

as:

Ej,t[V
θ
j+1(wj+1)] ≈ Ej,t[Vj+1(w

∗
j+1)] +

Aj+1

1− γ
(wj − cj,t)

1−γ(1− γ)σαj,tνj,t (63)

Proposition 2: Continue with the guess of the value function’s form:

V θ
j (wj) = Aj

w1−γ
j

1− γ
+ θBj

w
2(1−γ)
j

2(1− γ)
+O(θ2) (64)

≈ V 0
j (wj) + θV 1

j (wj) (65)

Note that Aj is the same as in the benchmark model. When there is no ambiguity

aversion (i.e. θ = 0), the value function degenerates into that of the benchmark model.

It is intuitive to conjecture that the optimal portfolio choice and consumption take

the following forms:

αj,t = α∗
j,t + θα′

j,t (66)

cj,t = c∗j,t + θc′j,t (67)

where α∗, c∗j,t are the solutions without ambiguity defined in Proposition 1.

Then we can approximate the value function by dropping the term with θ2 and higher
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orders:

V θ
j (wj) = max

c,α
{
c1−γ
j,t

1− γ
+ βϕj[−

1

2
θA2

j+1(wj − cj,t)
2−2γσ2α2

j,t + Ej,t[V
θ
j+1(w

∗
j+1)]]}

≈ max
c,α

{
c1−γ
j,t

1− γ
+ βϕj[−

1

2
θA2

j+1(wj − cj,t)
2−2γσ2α2

j,t + Ej,t[V
0
j+1(w

∗
j+1)]

+θEj,t[V
1
j+1(w

∗
j+1)]]}

where using log linearization we have:

Ej,t[V
0
j+1(w

∗
j+1)] ≈ Aj+1

1− γ
(wj − cj,t)

1−γ{1 + (1− γ)[rf + (µ̃− rf )αj,t]

+
1

2
(1− γ)σ2(αj,t − γα2

j,t)}

Ej,t[V
1
j+1(w

∗
j+1)] ≈ Bj+1

2(1− γ)
(wj − cj,t)

2(1−γ){1 + 2(1− γ)[rf + (µ̃− rf )αj,t]

+(1− γ)σ2(αj,t + α2
j,t − 2γα2

j,t)}

The FOC w.r.t. αj,t gives:

0 = −θA2
j+1(wj − cj,t)

1−γσ2αj,t + Aj+1{(µ̃− rf ) +
1

2
σ2 − γσ2αj,t}

+θBj+1(wj − cj,t)
1−γ{(µ̃− rf ) +

1

2
σ2 + (1− 2γ)σ2αj,t}

Substituting µ = µ̃+ 1
2
σ2 into the equation gives:

0 = −θA2
j+1(wj − cj,t)

1−γσ2αj,t + Aj+1{(µ− rf )− γσ2αj,t}

+θBj+1(wj − cj,t)
1−γ{(µ− rf ) + (1− 2γ)σ2αj,t}

By plugging αj,t = α∗
j,t + θα′

j,t =
µ−r
γσ2 + θα′

j,t, we get:

0 = −θA2
j+1(wj − cj,t)

1−γσ2(α∗
j,t + θα′

j,t)− θAj+1γσ
2α′

j,t

+θBj+1(wj − cj,t)
1−γ{(µ− rf ) + (1− 2γ)σ2(

µ− rf

γσ2
+ θα′

j,t)}
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Further approximation by dropping terms with θ2 and simplification give:

0 ≈ −A2
j+1(wj − cj,t)

1−γσ2α∗
j,t − Aj+1γσ

2α′
j,t

+Bj+1(wj − cj,t)
1−γ(µ− rf )(

1

γ
− 1)

α′
j,t = −

A2
j+1 +Bj+1(γ − 1)

Aj+1γ
α∗
j,t(wj − c∗j,t)

1−γ

= −
A2

j+1 +Bj+1(γ − 1)

Aj+1γ
α∗
j,t(

wj

1 + bj+1

)1−γ (68)

Then we can simplify Ej,t[V
0
j+1(w

∗
j+1)] and Ej,t[V

1
j+1(w

∗
j+1)]:

Ej,t[V
0
j+1(w

∗
j+1)] ≈ Aj+1

1− γ
(wj − cj,t)

1−γ{1 + (1− γ)rf +
1

2
γ(1− γ)σ2(α∗

j,t)
2}

Ej,t[V
1
j+1(w

∗
j+1)] ≈ Bj+1

2(1− γ)
(wj − cj,t)

2(1−γ){1 + 2(1− γ)rf

+(1− γ)σ2(α∗
j,t)

2}

We move onto the RHS of the Bellman equation:

RHS =
c1−γ
j,t

1− γ
+βϕj[−

1

2
θA2

j+1(wj−cj,t)
2−2γσ2(α∗

j,t)
2+Et[V

0
j+1(w

∗
j+1)]+θEj,t[V

1
j+1(w

∗
j+1)]]

The FOC w.r.t cj,t gives:

0 = c−γ
j,t − (wj − cj,t)

−γb−γ
j+1

+θβϕj(wj − cj,t)
1−2γ{(A2

j+1 −Bj+1)(1− γ)σ2(α∗
j,t)

2 −Bj+1[1 + 2(1− γ)rf ]}

By plugging cj,t = c∗j,t + θc′j,t, we get:

γb−γ−1
j+1 c′j,t+γb−γ

j+1c
′
j,t = βϕj(wj−c∗j,t)

2−γ[(A2
j+1−Bj+1)(1−γ)σ2(α∗

j,t)
2−Bj+1[1+2(1−γ)rf ]]

Therefore:

c′j,t =
βϕj{(A2

j+1 −Bj+1)(1− γ)σ2(α∗
j,t)

2 −Bj+1[1 + 2(1− γ)rf ]}
γb−γ

j+1(1 + b−1
j+1)

(wj − c∗j,t)
2−γ

=
βϕj{(A2

j+1 −Bj+1)(1− γ)σ2(α∗
j,t)

2 −Bj+1[1 + 2(1− γ)rf ]}
γb−γ

j+1(1 + b−1
j+1)

(
wj

1 + bj+1

)2−γ(69)
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where we use first-order Taylor approximation:

c−γ
j,t ≈ (c∗j,t)

−γ − γ(c∗j,t)
−γ−1θc′j,t

(wj − cj,t)
−γ ≈ (wj − c∗j,t)

−γ + γ(wj − c∗j,t)
−γ−1θc′j,t

Plugging the above results into the Bellman equation gives:

Bj

w
2(1−γ)
j

2(1− γ)
= [

1

γ(1 + b−1
j+1)

− 1

2(1− γ)
]βϕj{(A2

j+1 −Bj+1)(1− γ)σ2(α∗
j,t)

2

−Bj+1[1 + 2(1− γ)rf ]}(wj − c∗j,t)
2−2γ

where we use first-order Taylor approximation again:

c1−γ
j,t ≈ (c∗j,t)

1−γ − (γ − 1)(c∗j,t)
−γθc′j,t

Matching coefficients w.r.t. wj gives:

Bj = βϕj[
2(1− γ)

γ(1 + b−1
j+1)

−1]{(A2
j+1−Bj+1)(1−γ)σ2(α∗

j,t)
2−Bj+1[1+2(1−γ)rf ]}( 1

1 + bj+1

)2−2γ

(70)

with BJ = 0 because the agents in the last period do not invest and hence are not exposed

to uncertainty. The system can be solved backward.

We can express αj,t and cj,t in another way:

αj,t = α∗ + θα∗w1−γ
j Ωαj (71)

cj,t = c∗j,t + θw2−γ
j Ωcj (72)

where

Ωαj = −
A2

j+1 +Bj+1(γ − 1)

γAj+1(1 + bj+1)γ−1
(73)

Ωcj =
βϕj{(A2

j+1 −Bj+1)(1− γ)σ2(α∗)2 −Bj+1[1 + 2(1− γ)rf ]}
γb−γ−1

j+1 (1 + bj+1)3−γ
(74)

sgn(
∂Ωc1

∂ϕ1

) = sgn((1− γ)
∂ϕ

− 1
γ

1 (1 + b̃ϕ
− 1

γ

1 )γ−3

∂ϕ1

) (75)

= sgn((γ − 1)(1 + (b̃+ γ − 3)ϕ
− 1

γ

1 )) (76)

Proposition 3: The result follows largely from applying Proposition 1.

40



Since J = 2, we have that A2 = 1, and so:

b2 =

[
βϕ1[1 + (1− γ)rf +

1

2
(1− γ)

(µ− rf )2

γσ2
]

]− 1
γ

(77)

= ϕ
− 1

γ

1 b̃ (78)

where b̃ is defined in (26).

Applying the definitions in Proposition 1, we further obtain:

A1 =

ϕ
1
γ

1 + b̃

b̃

γ

(79)

b1 =
b̃

ϕ
1
γ

1 + b̃
(80)

Substituting these into equation (13) gives equations (24) and (25). Finally, note using

equations (5) and (4) that:

c2,t+2 = w2 = w0R
p
0,t+1R

p
1,t+2 − c0,tR

p
0,t+1R

p
1,t+2 − c1,t+1R

p
1,t+2 (81)

Substituting in equations (24) and (25) implies equation (27).

Proposition 4: Since in a simple three-period model, the old do not invest in the

stock market, we have ν2,t = 0. Substituting equations (22) and (23) into equation (19),

and using the expressions for A1, b1 and b2 gives us the optimal distortions for the young

and the middle-aged.

Corollary 1: Using Proposition 4 we have that:

ν1,t(1) = − θσα∗

(1 + b̃)1−γ
w1−γ

1 (82)

And:

ν0,t(0) = − θσα∗

b̃γ−1(b̃+ b̃2)1−γ
w1−γ

0 = − θσα∗

(1 + b̃)1−γ
w1−γ

0 (83)

Therefore ν0,t(0) = ν1,t(1)
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Corollary 2: For the middle-aged:

∂ν1,t
∂ϕ1

= −θσα∗
1,t(w1)

1−γ ∂(1 + ϕ
− 1

γ

1 b̃)γ−1

∂ϕ

=
γ − 1

γ
θσα∗

1(w1)
1−γ(1 + ϕ

− 1
γ

1 b̃)γ−2ϕ
− 1

γ
−1

1 b̃


< 0 if γ < 1

= 0 if γ = 1

> 0 if γ > 1

(84)

For the young:

∂ν0,t
∂ϕ1

= −θσα∗
0,t(w0)

1−γ b̃−γ(ϕ
1
γ

1 + b̃+ b̃2)−2+γ 1

γ
ϕ

1
γ
−1

1 (b̃2 + γϕ
1
γ

1 + b̃γ) < 0 (85)

Corollary 3: For the middle-aged:

∂ν1,t
∂w1

= − θσα∗ϕ
1−γ
γ

1

(ϕ
1
γ

1 + b̃)1−γ

w−γ
1 (1− γ)


< 0 if γ < 1

= 0 if γ = 1

> 0 if γ > 1

For the young:

∂ν0,t
∂w0

= − θσα∗(ϕ
1
γ

1 + b̃)

b̃γ(ϕ
1
γ

1 + b̃+ b̃2)1−γ

w−γ
0 (1− γ)


< 0 if γ < 1

= 0 if γ = 1

> 0 if γ > 1

Corollary 4: Differentiating equations 84 and 85 with respect to w0, w1 respectively:

∂

∂w0

(
∂ν0
∂ϕ1

)
= −(1− γ)

γ
θσα∗

0,t(w0)
−γ b̃−γ(ϕ

1
γ

1 + b̃+ b̃2)−2+γϕ
1
γ
−1

1 (b̃2 + γϕ
1
γ

1 + b̃γ)

∂

∂w1

(
dν1
dϕ1

)
= −(1− γ)2

γ
θσα∗

1(w1)
−γ(1 + ϕ

− 1
γ

1 b̃)γ−2ϕ
− 1

γ
−1

1 b̃
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If γ = 0, both differentials equal 0. If γ ̸= 0, then:

∂

∂w0

(
∂ν0
∂ϕ1

)
∝ −(1− γ)

∂

∂w1

(
∂ν1
∂ϕ1

)
∝ −(1− γ)2

Combined with the signs derived in Corollary 2 this delivers Corollary 4.

Lemma 2: To reduce notation, in this proof we use ADr to denote the relative ag-

gregate demand for risky assets:

ADr ≡
AD(risky)

AD(safe) + AD(risky)
(86)

Using equation 12 to substitute out for α∗, equation 48 can be rewritten:

ADr =
µ− rf

γσ2
(1 + θ(Γ0 + Γ1)) (87)

where:

Γj =
Ωα,jw

1−γ
j (wj − cj)

w0 − c0 + w1 − c1
(88)

for j ∈ {0, 1}.
From this we have:

∂ADr

∂µ
=

1

γσ2
(1 + θ(Γ0 + Γ1)) +

µ− rf

γσ2
θ

(
∂Γ0

∂µ
+

∂Γ1

∂µ

)
(89)

This derivative is strictly positive if:

−θ

(
∂Γ0

∂µ
+

∂Γ1

∂µ

)
< ADr

γσ2

(µ− rf )2
(90)

Similarly, differentiating equation 87 with respect to rf yields:

∂ADr

∂rf
= − 1

γσ2
(1 + θ(Γ0 + Γ1)) +

µ− rf

γσ2
θ

(
∂Γ0

∂rf
+

∂Γ1

∂rf

)
(91)
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This derivative is strictly negative if:

θ

(
∂Γ0

∂rf
+

∂Γ1

∂rf

)
< ADr

γσ2

(µ− rf )2
(92)

The right hand side is the same in conditions 90 and 92, and it is strictly positive.

Let us start with condition 90. It is trivially satisfied if:(
∂Γ0

∂µ
+

∂Γ1

∂µ

)
≥ 0 (93)

Outside of this case, condition 90 is satisfied if:

θ < ADr
γσ2

(µ− rf )2

(
−∂Γ0

∂µ
− ∂Γ1

∂µ

)−1

(94)

Now consider condition 92. Again, this is trivially satisfied if:(
∂Γ0

∂rf
+

∂Γ1

∂rf

)
≤ 0 (95)

Outside of this case, condition 92 is satisfied if:

θ < ADr
γσ2

(µ− rf )2

(
∂Γ0

∂rf
+

∂Γ1

∂rf

)−1

(96)

A sufficient condition for both 90 and 92 to be satisfied is therefore:

θ < θ∗ = ADr
γσ2

(µ− rf )2
·min

((
−∂Γ0

∂µ
− ∂Γ1

∂µ

)−1

,

(
∂Γ0

∂rf
+

∂Γ1

∂rf

)−1
)

(97)

B Consumption and Saving with Ambiguity Aver-

sion

In the benchmark without ambiguity, Proposition 3 implies that young and middle-aged

agents consume less, and save more, when the probability of surviving to old age increases:

dc∗j
dϕ1

< 0 (98)

With ambiguity, we start with equation 23 for j = {0, 1}, and substitute out for c∗j
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using Proposition 3:

c0 =
b̃2

ϕ
1
γ

1 + b̃+ b̃2
w0 + θw2−γ

0 Ωc,0 (99)

c1 =
b̃

ϕ
1
γ

1 + b̃+ b̃2
Rp

0w0 + θw2−γ
1 Ωc,1 (100)

Differentiating with respect to ϕ1, we obtain:

dc0
dϕ1

= − b̃2ϕ
1−γ
γ

1

γ(ϕ
1
γ

1 + b̃+ b̃2)
w0 + θw2−γ

0

dΩc,0

dϕ1

(101)

dc1
dϕ1

= − b̃ϕ
1−γ
γ

1

γ(ϕ
1
γ

1 + b̃+ b̃2)
Rp

0w0 + θ

(
(2− γ)w1−γ

1 Ωc,1
dw1

dϕ1

+ w2−γ
1

dΩc,1

dϕ1

)
(102)

These derivatives are negative whenever:

θ
dΩc,0

dϕ1

<
b̃2ϕ

1−γ
γ

1

γ(ϕ
1
γ

1 + b̃+ b̃2)
wγ−1

0 (103)

θ

(
(2− γ)Ωc,1

dw1

dϕ1

+ w1
dΩc,1

dϕ1

)
<

b̃ϕ
1−γ
γ

1

γ(ϕ
1
γ

1 + b̃+ b̃2)
Rp

0w0w
γ−1
1 (104)

In both of these inequalities, the right hand side is strictly positive. Since Ωc,j is

independent of θ, there is therefore a θ+ such that θ < θ+ is sufficient to ensure both

inequalities hold, and consumption of young and middle-aged agents falls as ϕ1 rises.

Figure 9 shows a numerical example of this. It plots the consumption and saving

paths for the ambiguity-averse agents with J = 2 studied in Section 3.2, with the same

parameters as those in Figures 2 and 3.

These paths are very similar to those without ambiguity aversion in Figure 1. Figure

10 plots the paths of consumption for ϕ1 = 0.6, with and without ambiguity.
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Figure 9: Consumption and saving paths with ambiguity.

Note: Plots constructed using J = 2, µ = 0.06, rf = 0.045, σ = 0.1, θ = 0.045, γ = 3, β = 0.99,
ϕ1 ∈ (0, 1], w0 = w1 = 2, and risky asset returns set to their expected level every period. This therefore
abstracts from the effect of return shocks.

Figure 10: Consumption and saving paths with and without ambiguity, for ϕ1 = 0.6.

Note: Plots constructed using J = 2, µ = 0.06, rf = 0.045, σ = 0.1, ϕ1 = 0.6, γ = 3, β = 0.99,
ϕ1 ∈ (0, 1], w0 = w1 = 2, and risky asset returns set to their expected level every period. This therefore
abstracts from the effect of return shocks.
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C Quantitative Model Details

C.1 Data Construction and Calibration

SCF: Using the 2019 SCF microdata, we first group respondents into age categories:

< 35, 35 − 44, 45 − 54, 55 − 64, 65 − 74, 75+. We then construct weighted percentiles

of the distribution of financial wealth for each age group. The wealth variable used is

total financial assets. When calibrating the model, for Figure 6 all agents are given the

median wealth for their age group, in 1000s of dollars. In Figure 8, we solve the model

assuming agents have the median wealth for their age, or other percentiles of the wealth

distribution, depending on the line to be plotted.

The share of portfolios in risky assets used to calibrate θ, and plotted in Figure 6,

is defined as stock holdings as share of family group’s financial assets, among those who

participate in the stock market.

Mortality: For the main calibration, we take mortality rates by age group from the

NVSS, and compute ϕj as 1 − mortality ratej. For projections to 2100 in Section 4.3,

we use projected mortality rates from the Office of the Chief Actuary. They project

mortality rates for males and females separately, at every year of age up to 119. To

compute projected aggregate survival rates from this, we first take data on sex ratios in

the US in 2021 from the UN World Population Prospects 2022. This data is reported at

selected ages,24 so for the ages missing from the sex ratio data we assume the sex ratio is

equal to that of the nearest cohort for which there is data. We then generate projected

sex ratios at each age for all years up to 2100, by combining the mortality rates from the

Office of the Chief Actuary for each sex, age, and year, with the assumption that the sex

rate at birth will remain the same as it was in 2021. These projections are important,

as in 2019 the female-male ratio rose sharply at older age groups due to women having

longer life expectancy in the US. However, this life expectancy gap is projected to narrow

in coming decades, which will reduce the female-male ratio in older age groups. Finally,

we use the projected sex ratios to combine female and male mortality rates to give an

aggregate mortality rate. 1- this mortality rate for each age group then gives projected

ϕj in 2100.

C.2 Detection Error Probabilities

As is common in the literature on ambiguity aversion, we use model detection error

probabilities (DEP) to infer whether agents are hedging against the models that are

empirically plausible to generate the data we observe. Intuitively, we treat agents as

24These ages are 15, 20, 30, 40, 50, 60, 70, 80, 90, 100.
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statisticians using likelihood ratio test to discriminate among models. DEP measures

how far the alternative models can deviate from the approximating one without being

discarded. Low values of DEP means that agents are unwilling to discard very different

alternative models, which could be easily discriminated given observed data.

DEP assigns equal initial priors to the approximating and distorted models, hence it is

the average of the probabilities of Type I and Type II errors. A Type I error occurs when

the likelihood ratio test chooses the distorting model when the approximating model is

the true data generating process. A Type II error is the reverse. Formally, DEP is defined

as:

DEP =
1

2
Prob(ln(

LA

LB

) < 0|A) + 1

2
Prob(ln(

LB

LA

) > 0|B) (105)

where A denotes the approximating model and B is the distorting model.

As discussed by Anderson et al. (2003), the following bound on the average error in

using a likelihood ratio test to discriminate between the approximating and distorted

models is useful when the data is of a continuous record with length T. The DEP bound

in this discrete-time model can be approximated in the following way:

avg DEP ≤ 1

2
E exp{−1

8

∫ T

0

ν2(wt) dt} (106)

≈ 1

2
E exp{−1

8

T∑
t=0

ν2(wt)} (107)

In the calibration, we take T=109 (consistent with the maximum lifespan in our

calibration) and agents start investment at age 30. Here we plot how DEP changes with

the level of ambiguity aversion. With the calibrated value of θ = 0.008, we obtain a large

DEP value. This implies that based on the observed data, it is not easy to distinguish

the distorted model from the approximating model.
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Figure 11: Detection Error Probabilities
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