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Abstract
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assumption of constant structural parameters. I characterize the resulting bias and develop two
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that standard estimates substantially understate the role of expectations in policy transmission, with
signalling effects on inflation expectations particularly prominent.
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1 Introduction

Households, firms, and investors acquire more information about economic objects when they
have strong incentives to do so. This is the core premise of models of ‘rational inattention,” in
which agents choose how much information to process about the variables affecting their decision
problems, subject to a cost. Following Sims (2003), a large literature has explored how this
endogenous information acquisition affects a wide range of macroeconomic dynamics.' There is
also a growing body of empirical evidence supporting the mechanism.?

In this paper I show that endogenous information acquisition also affects the identification
of structural vector autoregressions (VARs) via heteroskedasticity. This approach, pioneered by
Rigobon (2003) and Rigobon and Sack (2003, 2004), and reviewed recently in Lewis (2025), is a
commonly-used tool for applied macroeconomics. It is often motivated as requiring fewer structural
economic assumptions than other identification schemes, as the key assumptions are statistical,
not economic. However, once we allow for the possibility of endogenous information acquisition,
as is now common in other areas of macroeconomics, this ceases to be true. Rational inattention
therefore has econometric implications, not just macroeconomic ones.

The key argument is straightforward. Identification via heteroskedasticity exploits changes
over time in the variance-covariance matrix of the structural shocks hitting the economy. These
changes can be used to identify the transmission of the shocks, if that transmission is itself constant
across variance regimes. In other words, the mapping from structural innovations to observable
variables must remain constant. However, a core lesson of rational inattention models is that when
the variance of a shock rises, decision-makers optimally pay more attention to it (Sims, 2003, 2010).
At the same time, greater attention affects how shocks transmit to decisions and aggregate outcomes.
The ‘constant shock transmission’ required for identification via heteroskedasticity therefore fails,
unless we impose a strong economic assumption that agent information processing does not vary, or
does not affect macroeconomic dynamics.

I make three contributions. Theoretically, I show formally that the presence of rational inattention
biases structural VAR estimates identified via heteroskedasticity. Methodologically, I develop
two techniques to correct for this bias: one using an external proxy for attention, another using
observations of three or more variance regimes. Empirically, I apply this bias-corrected identification
to assess the role of expectations and attention in the transmission of unconventional monetary

policy shocks.

ISee e.g. Mackowiak and Wiederholt (2009, 2015); Pasten and Schoenle (2016); Stevens (2019); Song and Stern
(2024); Macaulay (2021, 2025), and the review in Mackowiak et al. (2023).

2e.g. Mondria and Quintana-Domeque (2013); Cavallo et al. (2017); Coibion et al. (2018); Roth and Wohlfart
(2020); Dean and Neligh (2023); Weber et al. (2025), among many others.



Acknowledging the effects of rational inattention on identification via heteroskedasticity has
benefits beyond bias correction. When attention is endogenous, impulse responses to structural
shocks differ depending on the variance regime, as that regime determines information choices. |
show that an identification that does not take this into account will recover a non-convex combination
of the true regime-specific responses, which may even lie outside the span of the true responses.
However, the bias correction methods I propose recover the distinct impulse responses present in
each variance regime. By comparing them, we therefore reveal how expectations, and information
acquisition, affect shock transmission. This insight is not available from other VAR identification
schemes that yield a single impulse response per shock.?

I apply these insights to the study of unconventional monetary policy, extending the canonical
implementation of identification via heteroskedasticity in Wright (2012) to the full zero lower bound
(ZLB) period in the US (2008-2015). Wright’s identifying assumptions are that (i) the variance
of monetary policy shocks is greater on days with scheduled Federal Open Markets Committee
(FOMC) announcements than on other days; and (i1) the transmission of a unit monetary policy
shock is constant over time. Rational inattention calls the second of these into question.

To check if rational inattention is important in this context, I conduct two tests. First, I show
that in both the full ZLB period and the 2008-2011 subsample analysed by Wright (2012), the
difference between the covariance matrices of reduced-form innovations in the two regimes has an
eigenvalue structure inconsistent with the assumption of constant shock transmission, but which is
predicted by the model with rational inattention. Second, I use daily Google Trends searches for
“Federal Reserve” as a proxy for attention to monetary policy. Search volume increases substantially
on FOMC announcement days, regardless of the realized monetary policy shocks that occurred
(as identified from high-frequency asset price movements by Swanson, 2021). This suggests that
attention to monetary policy is systematically higher in the high-variance regime, precisely as the
theory predicts.

Given these findings, I then use the Google Trends series to implement the first of the correction
methods I propose in the earlier part of the paper. This involves using the attention proxy to infer
the ratio of structural shock variances across regimes. When combined with an assumption that
one variable in the system is unaffected by attention on impact, this pins down the rotation among
observationally equivalent impact vectors. Intuitively, knowing how much more agents pay attention
in the high-variance regime reveals how much of the observed covariance difference is due to
changing variances versus changing transmission, allowing us to separate the two.

The second correction method does not require a proxy for attention, and so is more conservative

3This includes recursive identification (e.g. Christiano et al., 1999), long-run restrictions (e.g. Blanchard and Quah,
1989), as well as approaches using external instruments (e.g. Romer and Romer, 2004; Giirkaynak et al., 2005b).
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in that dimension. However, it does require three or more observable variance regimes. The
insight is that with a single shock of interest, the change in impulse responses between regimes
1 and 2 is collinear with the change between regimes 2 and 3, because both shifts occur due to a
one-dimensional change in agent attention to that structural shock. This collinearity provides an
extra restriction that can be used to disentangle the true structural parameters of the model. Since the
monetary policy application has only two clearly-defined variance regimes, I use the attention-proxy
method throughout.

The results imply that the updating of beliefs about the stance of monetary policy, through
attentive agents, is of central importance to the transmission of unconventional monetary policy
shocks. Uncorrected impulse responses from conventional identification via heteroskedasticity
are strongly distorted by endogenous information acquisition, often lying outside the span of the
corrected regime-specific responses. These uncorrected estimates imply greater persistence in the
effects of unconventional monetary policy on Treasury and corporate bond yields than is observed
once the bias correction is complete, and they miss a large short-term swing in breakeven inflation
rates.

Specifically, I find that the immediate impact of policy on Treasury yields is similar across
regimes, consistent with mechanical portfolio rebalancing that operates independently of beliefs.
However, the persistence of these effects differs markedly by regime: after 50 business days, the
effect on the 10-year yield is approximately half as large in the low-attention regime than in the
high-attention regime. Without the updates to expectations facilitated by high attention, the effects
of unconventional policy on the yield curve are largely transitory. High-grade corporate bond yields
follows similar patterns, indicating that they are indeed close substitutes for long-term Treasuries,
as argued by Krishnamurthy and Vissing-Jorgensen (2011) and others.

For riskier investment-grade corporate bonds, however, attention acts as a powerful amplifier.
BAA yields respond 25% more strongly on impact in the high-attention regime, consistent with
a credit channel where information about monetary policy causes investors to update default
expectations. The impulse responses in the two regimes subsequently converge, suggesting that
inattentive agents eventually learn the relevant information for this market, but with a delay that
dampens the initial transmission.

Finally, the bias correction reveals pronounced effects of unconventional policy on inflation
expectations. Theoretical models of the signalling channel of unconventional monetary policy such
as Eggertsson and Woodford (2003) predict that inflation expectations should increase strongly after
expansionary monetary policy shocks. However, uncorrected impulse responses, such as those in
Wright (2012), display only muted effects on market-based expectations. I find that this is driven



by a strong ‘rotation’ in the low-attention regime, in which medium-term breakeven inflation rises
but longer-term breakevens fall, plausibly reflecting mechanical or liquidity-driven distortions. In
contrast, when attention is high, expectation effects offset this, delivering small positive effects
overall. The effect of unconventional policy on inflation expectations is therefore substantially
stronger than raw breakevens data would suggest, as the small positive effects on forward breakevens
in the high attention regime include a large negative mechanical effect, which is offset by updates to
expectations.

Taken together, these findings add new evidence to the view that signalling effects are a
dominant driver of unconventional monetary policy transmission. Looking forward, this highlights
a trade-off for policymakers engaging in quantitative tightening: effective management of inflation
expectations requires high attention, but this same attention amplifies the immediate tightening of

financial conditions in corporate credit markets.

Related Literature. This paper principally contributes to the literatures on rational inattention
and the identification of structural VARs using heteroskedasticity. In the former, a large literature
since Sims (2003) has shown that endogenous information acquisition has important effects across
macroeconomics and finance, including in in price setting (Mackowiak and Wiederholt, 2009;
Pasten and Schoenle, 2016; Matéjka, 2016; Stevens, 2019), consumption (Tutino, 2013), business
cycles (Mackowiak and Wiederholt, 2015; Flynn and Sastry, 2024), monetary policy (Paciello and
Wiederholt, 2014), misallocation (Gondhi, 2023), trade (Dasgupta and Mondria, 2018), financial
markets (Mondria and Quintana-Domeque, 2013; Kacperczyk et al., 2016), labor markets (Acharya
and Wee, 2020; Ellison and Macaulay, 2021), and household finance (Lei, 2019; Macaulay, 2021,
2025). Empirical evidence has been found in experiments (Dean and Neligh, 2023), surveys (Roth
and Wohlfart, 2020; Link et al., 2023), and in VARSs involving expectations (Geiger and Scharler,
2021). I extend this literature by showing that endogenous attention also affects macroeconometric
analysis, specifically structural VARs identified via heteroskedasticity.*

This method of identifying structural VARs was popularized by Rigobon (2003) and Rigobon
and Sack (2003, 2004). While these consider discrete observable variance regimes, the method
has since been extended to other forms of heteroskedasticity, including Markov-switching models
(Lanne and Liitkepohl, 2010), smooth volatility transitions (Liitkepohl and NetSunajev, 2017),

and other parametric volatility processes (e.g. Normandin and Phaneuf, 2004).> Applications

“4Perhaps closest in spirit to this paper is Mac¢kowiak and Wiederholt (2024), who study how rational inattention
affects the parameters identified in information-treatment randomized controlled trials.

3See Liitkepohl and NetSunajev (2015) for an early survey of possible models, and Lewis (2021, 2025) for more
recent developments. Magnusson and Mavroeidis (2014) discuss identification from more general sources of reduced-
form instability.



include estimating the spillover effects of sovereign bonds (Rigobon, 2003), cross-border financial
market linkages (Ehrmann et al., 2011), monetary policy (Rigobon and Sack, 2003; Wright, 2012;
Nakamura and Steinsson, 2018; Schlaak et al., 2023), fiscal multipliers (Lewis, 2021), macro-
financial feedback effects (Brunnermeier et al., 2021), and pandemic shocks (Miescu and Rossi,
2021). I show that rational inattention, now a relatively common assumption in macroeconomic
theory, can bias structural VARs identified in this way if my correction methods are not applied.
Although for clarity I focus on discrete variance regimes and a single shock of interest, the core
mechanism extends to more general cases: attention responds to volatility, and this causes the key
constant-transmission identifying assumption to fail.

The rational inattention mechanism I study causes the matrix governing the impact effects of
structural shocks to vary with the variance regime. Bacchiocchi and Fanelli (2015), Bacchiocchi
et al. (2018), and Angelini et al. (2019) also consider variation in this impact matrix, though
they allow it to vary in a general way, and thus have to provide extra restrictions to identify the
model parameters. As Brenna et al. (2023) point out, these extra restrictions are often difficult
to defend. My approach differs in two important ways. First, rather than a general relaxation of
the constant-impact matrix assumption, rational inattention provides a concrete economic reason
for time-varying transmission, enabling both testing and bias correction. Second, the correction
recovers distinct impulse responses under varying levels of attention, which reveals how attention
affects the transmission of macroeconomic shocks. This insight is unavailable from approaches that
treat impact-matrix variation as a nuisance, or other structural VAR identification schemes.

My application follows from Wright (2012) and Nakamura and Steinsson (2018), who similarly
identify the effects of monetary policy shocks by assuming higher variance on FOMC announcement
days. More broadly, this exercise contributes to the literature on unconventional monetary policy,
which has used a variety of theoretical and empirical approaches (e.g. Gagnon et al., 2011; Gertler
and Karadi, 2011; Swanson, 2011; Baumeister and Benati, 2013; Gaballo, 2016; de Groot and Haas,
2023; Ikeda et al., 2024).° Within this, many papers have argued theoretically that expectations play
an important role in the transmission of unconventional monetary policy (e.g. Iovino and Sergeyev,
2023; Bhattarai et al., 2023), and found empirical evidence consistent with this (e.g. Bauer and
Rudebusch, 2014; Boneva et al., 2016). I provide direct evidence of expectational effects: the bias
correction recovers impulse responses to unconventional monetary policy shocks under high and

low attention, and thus under different degrees of expectation updating.

5See Dell’ Ariccia et al. (2018) and Kuttner (2018) for reviews of this vast literature.



Outline. Section 2 lays out a baseline structural VAR model, and highlights the assumptions
necessary for identification via heteroskedasticity to succeed. Section 3 adds rational inattention to
this model, and shows how this biases the parameter estimates and impulse responses obtained if the
econometrician proceed with identification via heteroskedasticity as usual. Section 4 develops two
methods for correcting the bias, and Section 5 implements the first of them to study the transmission

of unconventional monetary policy shocks. Section 6 concludes.

2 Identification via Heteroskedasticity: Baseline Framework

2.1 Structural VAR Representation

Consider a structural VAR(p) of the form
A(L)y: = Be;, (1)

where y; is an n x 1 vector of observable variables, A(L) =1, — AL — AyL* — -+ — A, LPisa
matrix polynomial in the lag operator, B is an n X n invertible matrix mapping structural shocks
to observables, and ; is an n X 1 vector of structural shocks. The structural shocks are such that
Ele;] = 0 and E[e;e}] = X., where 3. is diagonal, implying the structural shocks &; are mutually
uncorrelated.

The reduced-form representation is
A(L)y; = u, 2)
where u; = Be, are reduced-form innovations with a covariance matrix given by
Q = E[uwu;] = BX.B. (3)

The fundamental identification problem is that there are infinitely many combinations of the
structural matrices B, 3. that could rationalize the observed reduced-form covariance matrix 2.

Without further restrictions, the structural parameters are not separately identified.

2.2 Identification via Heteroskedasticity

The heteroskedasticity-based approach, following Rigobon (2003), exploits variation in shock

variances across regimes. Suppose there exist X' > 2 variance regimes indexed by s € {1,..., K'}.



In regime s, structural shocks have a covariance matrix given by
> = diag(o7,, 054, ..., 00), 4)

where the variances O'J2-7S may differ across regimes. Throughout, I will use a superscript (s) to
denote matrices specific to regime s.

The key identifying assumption is:
Assumption 1 (Structural Invariance) The impact matrix B is constant across variance regimes:

B®Y =B Vsc{l,...,K}. (5)

Example: Monetary Policy on FOMC Days. A canonical application is Wright (2012), who
identifies monetary policy shocks by comparing FOMC announcement days (high variance for
monetary policy shocks) to non-announcement days (low variance). In this context, Assumption 1
implies that the responses to monetary policy shocks are the same on FOMC and non-FOMC days;

only the variance of the monetary policy shock is different.’

Identification procedure. Under Assumption 1, the reduced-form covariance in regime s is
Q¥ =BxUB. (6)

Identification proceeds by exploiting the differences across regimes. Taking differences between

regime s and regime 1, we obtain
Q- -B(x - x0)B. (7)

If the variance changes are concentrated in a single shock (say shock 1), then ES) — ES) has

rank one, and we can write
Q¥ — QW = (0, — o7 ,)bybi, (8)

where b is the first column of B. The spectral decomposition of ) — Q1) can then be used
to recover by up to sign and scale. The sign ambiguity is typically resolved by convention (e.g.,

a contractionary monetary policy shock raises the policy rate). The scale is pinned down by a

"In Wright’s notation, “the parameters A(L), p and {R;}?_, are all assumed to be constant,” (Wright, 2012,
p- F449) where R,; captures the impact of structural shock ¢ on observables in the VAR.



normalization, such as fixing the variance of the shock in one regime or fixing one element of b;.
Wright (2012), for example, uses the normalization that (o7 , — 07,) = 1.

The key point of this paper is that when agents engage in optimal information acquisition,
Assumption 1 will fail. If the variance of structural shocks changes from one regime to another,
this will cause agents to change their information choices, which in turn will affect how they react
to shocks, leading to a change in B. In other words, the response to structural shocks differs

systematically across these regimes precisely because the variance differs.

3 Rational Inattention and Regime-Dependent Transmission

This section introduces rational inattention into the SVAR framework and shows how this biases
estimates identified through heteroskedasticity. For simplicity, I focus here on the case in which the

structural shock of interest is i.i.d..

3.1 Environment

Denote the structural shock of interest as €;,. In variance regime s, this shock is distributed
according to

ere ~ N(0,02), 9)

where without loss of generality I assume regime s = K has the greatest variance, i.e. 0% > 037& K-
In the monetary policy example from Wright (2012) discussed above, € ; is the monetary policy
shock, the number of regimes is K = 2, and s is equal to 2 (high variance) on FOMC days and 1
(low variance) on non-FOMC days.

I now make two assumptions which are irrelevant in existing treatments of identification via

heteroskedasticity, but which are important when introducing information frictions into the model.

Assumption 2 (Transmission Through Expectations) The effect of shock €, on the vector of
macroeconomic outcomes y; depends on the actual shock, and the average perception of the shock

across a continuum of agents:
A(L)y; = aie14 + ,31Et[51,t] + other shocks. (10)

The vector a; captures transmission channels such as direct asset price effects or mechanical
balance-sheet adjustments that operate independently of agent beliefs. In contrast, 3, captures

transmission channels that depend on agents’ perceptions of the shock. In the monetary policy



application, the expectational component may come from consumption, investment, or pricing
decisions which require households and firms to form beliefs about the policy stance. I will show
below that the average shock perception E, [£14] is a deterministic function of the true shock ¢ 4, so

Assumption 2 will not imply a departure from the structural VAR form in equation (1).

Assumption 3 (Known Variance Regimes) Agents observe the variance regime s before forming

expectations and making decisions.

Assumption 3 is natural for applications like FOMC announcements, where the schedule is
publicly known. This assumption is crucial: if agents did not know the variance regime ex ante,

attention would not condition on volatility, and my critique would not apply.

3.2 Information Structure

Agents do not observe ¢, ; directly. Instead, I follow the rational inattention literature (reviewed in
Mackowiak et al., 2023) and assume that agents can pay to observe possibly noisy signals about
€1+, where more precise signals come with a greater cost. Agents observe all other structural shocks
directly and without error.®

Specifically, each agent ¢ chooses a signal structure, which consists of a signal space Z and
a conditional distribution 7(z|e; ) over signals z € Z given the realization of the shock. The
agent then takes an action a;; after observing the signal realization. As is common in the rational
inattention literature,’ Iassume a quadratic objective function, such that agent i wishes to minimize

the expected squared deviation of their action from the realized shock:

%I,HE [(am —e14)° | Zit s} . (11)

This expectation is formed conditional on the agent’s information set, which consists of their

idiosyncratic signal z;; and, via Assumption 3, the regime s. Given this information, the optimal

action is the conditional expectation a;, = El[e; |2, 5|, and the minimized loss is the posterior
variance Var(e1 4|24, S).

Having found the agent’s payoff at the optimal action, conditional on a given signal, I now turn

to the choice of signal structure. Following Sims (2003), I impose that the cost of a signal structure

8This assumption is made to clearly isolate the role of attention to the shock of interest. If the costs of information
are additively separable across variables, as in e.g. Afrouzi and Yang (2021), then relaxing this assumption makes no
difference to the results.

9See e.g. Mackowiak and Wiederholt (2009, 2015), who show that this can be motivated as a quadratic approximation
to richer objective functions.



is proportional to the mutual information between the shock and the signal, defined as
L(ery; z) = H(ery) — E. [H(ery]2)] (12)

where H(-) denotes Shannon entropy. Intuitively, mutual information measures the expected
reduction in uncertainty about ¢; ; from observing the signal. More precise signals that imply larger
expected shrinkage from prior beliefs to posteriors are therefore more costly for the agent to process.

The agent’s information-choice problem is therefore to choose a signal structure to minimize

the sum of the expected loss from equation (11) and information costs:

min E [Var(ei |2, 5)] + 6 - Z(e14; 2), (13)

m(zle1,e)

where 6 > 0 is the marginal cost of information.

3.3 Optimal Attention Choice

Given a quadratic objective function and Gaussian uncertainty, it can be shown (Sims, 2003) that

the optimal signal structure consists of a single noisy signal of the form
Zig = €1t + Mgy Nix ~ N(0,1/Kiy), (14)

where x;; > 0 is the signal precision.

With this in hand, the posterior expectation of ¢; ; can be written as

]E(gl,t

Zits 3) = TitRit, (15)

where )
o

s 16
02+ 1/kKis (16)

Tit =

is the signal-to-noise ratio. Since 7;; is monotonically increasing in the amount of information
processed Z (g1 ¢; 2), I will refer to it as a measure of the agent’s attention.

The agent problem (13) can then be reduced to the choice of precision &;;, or equivalently
the signal-to-noise ratio 7;;. Evaluating the posterior variance Var(e.|2;,s) and the mutual

information Z (e ¢; 2) with the signal structure in (14), we can write the agent’s information-choice

10



problem as'’

1 1
3 2 pE— . . —
rngh {05(1 Tit) +6 5 log (1 — Ti,t) } ) (17)

Lemma 1 (Optimal Attention) The optimal signal-to-noise ratio for each agent in period t is:

1—:-% ifo2>12
7_* _ 20’? f S 2 ; ( 1 8)
0 otherwise

which is strictly increasing in o2 for 02 > 0/2.

Proof. The first-order condition for the problem (17) is:

0 1
i+ 5 = 0. (19)

Rearranging gives the first case in equation (18). Positivity requires 0> > /2. When this condition
holds (i.e. at the interior solution for 7; ;) the derivative of 77 with respect to o2 is
drr 0

The key implication of Lemma 1 is:

Corollary 1 Optimal attention is increasing in the variance of the underlying shock:
2 2
0; >0, = T, 2T (2D

for any pair of regimes j, k.

The inequality in signal-to-noise ratios is strict whenever 0]2- > g.

This is a very standard feature of models of rational inattention. Agents allocate more attention to
monitoring monetary policy when monetary policy shocks are more volatile, because large volatility
means that agents would make larger expectational errors if they did not process information. The
key argument of this paper is that this standard mechanism has consequences for the identification

of structural VARSs via heteroskedasticity, because it links variance regimes with shock transmission.

107 specify the Shannon entropy in terms of natural logarithms here for algebraic simplicity. Some rational inattention
models instead use base-2 logarithms so that the units of information are bits, but this is simply a rescaling, which
makes no difference to the argument presented here.

11



3.4 Aggregation with Idiosyncratic Signals

With a continuum of agents i € [0, 1] receiving idiosyncratic signals, the aggregate expectation is

1
Eiler] = / Eilery 2] di (22)
0

Combining equations (14) and (15) with the optimal attention from Lemma 1, each agent’s

conditional expectation is
Ei[51,t|2i,t, s] = TaZit =T, (51,t + Mig)- (23)

By the law of large numbers, idiosyncratic noise averages out, so that

Et [61775] = Ts*th‘ (24)

The identification failures due to information choice derived below are therefore not caused by
noise in expectations, since the noise terms average out across agents. Rather, the failure comes

from the structural dependence of attention on the variance of the shock of interest.'!

3.5 Regime-Dependent Impact Matrix

Substituting (24) into the expectations-augmented transmission equation (10), we recover the

standard structural VAR form in (1), with a regime-dependent impact matrix given by

BY = (en + 758, by -+ by). (25)

Proposition 1 (Regime-Dependent Transmission) With known variance regimes and endogenous
attention, the structural impact matrix is regime-dependent: whenever at least one regime has
02 > 0/2 and 3, # 0 we have that B varies with s.

This violates Assumption 1 (Structural Invariance), which breaks the usual conditions for

identification via heteroskedasticity.

Proof. By Corollary 1, 7j; > 7}, whenever 0% > /2. From (25), bgK) — bgK_l) = (15 —
Tk_1)B1 #0when 3, #0. m

Equation (24) also implies that including measures of expectations in the VAR will not address the failure of
Assumption 1, because the mapping from e; ; to E;[e1 4] still varies with the regime.

12



3.6 What Heteroskedasticity Identification Recovers

The econometrician observes reduced-form covariances 2*) and (incorrectly) assumes a constant

B. They then compute the difference:

QU — b = BW= (B - BB (BY) 26)

= op (a1 +75;8,) (a1 + 758,) — 0 (00 + 71.8,) (1 + 778,) (27)

where H and L denote two regimes such that 0% > 0%, and we maintain the assumption that only
the variance of the first structural shock varies with the regime, all other structural shocks have
constant variance and so cancel out in (26).

This is not proportional to bgH) (bgH))’ or bgL) (bgL))’ , outside of the knife-edge case in which
o and 3, are collinear. The identified object is a weighted combination of attention-invariant and

attention-sensitive transmission channels, mixed across regimes.

Proposition 2 (Pseudo-parameter recovered when endogenous attention is ignored) Suppose
an econometrician applies the standard spectral procedure used when the impact matrix B is
believed to be constant across regimes: they set by proportional to the eigenvector associated with
the largest (positive) eigenvalue of AQ2 = Q) —_ ),

If (o, +758,) (ay + 75 3,) # 0, then the resulting estimate by (up to scale) is given by

by o« (o +75B1) + k- (cu +7181), (28)

where k is a nonlinear combination of structural parameters a1, (3, variances 0%, 0%, and attention

Ty, Tr, given by the largest root of the quadratic
(6% D)k* + (0%,Cy +01CL) k + (02D) = 0, (29)

where
Cs=(an+7.8) (a1 +7.8)); D= (ca+758) (a1 +778,) (30)

Except in knife-edge cases, namely when the regime-specific impact vectors are collinear or
orthogonal, by is generically different from both (o + 75;8,) and (o, +753,). The resulting
impulse responses therefore correspond to a pseudo-parameter rather than the true impact of the

shock in either regime.

Proof. Appendix A.1. m
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That is, an econometrician who ignores endogenous information acquisition will obtain an
estimate by, which may appear reasonable, but which does not correspond to the true structural
impact vector in either regime. This, in turn, means that impulse responses computed using by will

not reflect the true transmission of the structural shock €, ; in either regime.

Corollary 2 (Impulse responses implied by identification ignoring endogenous attention)
Let {W},},>0 denote the reduced-form moving-average matrices implied by the lag polynomial

A(L), so that under regime s the structural impulse response of y,.j, to a unit €1 4 shock is
IRF,(h) = ¥y (a1 +7.8,), h=0,1,2,.... (31)

If the econometrician identifies by as in Proposition 2, then for every horizon h the estimated

impulse response is given by
IRF(h) o W,b, = IRFy(h)+k- IRF,(h). (32)

recalling that k is itself a nonlinear combination of parameters, including the structural parameters
determining [ RFy (h) and IRF,(h).

Normalizing the estimated impulse response so the impact on variable m at horizon 0 is equal
to one (i.e. setting e;n@ (0) = 1), the estimated IRF is

IRFy(h) + k IRF,(h)
¢! (IRFy(0) + k IRFL(0))

IRF(h) = (33)
which outside of the knife-edge cases discussed in Proposition 2 differs from both I RFy(h) and
IRFp(h) for generic h.

Proof. Appendix A.2. m

In this, it is important to recognize that the resulting normalized impulse response obtained from
maintaining Assumption 1 is not necessarily a convex combination of the true impulse responses
in each regime. The coefficient k£ need not be within [0, 1], and the denominator in (33) is itself a
mixture of structural impulse responses, creating further nonlinearities. This is why allowing for
general time-variation in impact matrices has been found to have large effects on IRF estimations in
practise (Bacchiocchi and Fanelli, 2015; Angelini et al., 2019). The key extra insight I provide is
that rational inattention gives a structural reason for why the impact matrix may vary, which thus
opens up the possibility of correcting the bias, and gaining economic insights from the variation

across regimes.
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When is the bias negligible? The bias characterized in Proposition 2 and Corollary 2 arises from
the interaction of two forces: agents adjust their attention across variance regimes, and this attention
affects shock transmission. If either channel is absent, identification via heteroskedasticity remains
valid. This, however, involves strong structural economic assumptions that are unlikely to hold in
many contexts of interest to the macroeconometrician.

In general, attention may be constant across regimes for three reasons. First, if attention costs
are very large relative to the payoffs of being informed, attention will be O in all regimes. In the
model above, this occurs if 0 > 203 for all regimes s. Second, if attention costs are very small, then
attention approaches 1 in all regimes. Formally, the difference in attention between two regimes,
when both regimes lead to the interior solution for attention, is 7}; — 77 = 0/2(0;? — 0%), which
approaches 0 as § — 0. The findings of time-varying attention across various contexts and agents
suggest that these cases are rare (e.g. Mondria and Quintana-Domeque, 2013; Song and Stern, 2024;
Flynn and Sastry, 2024; Macaulay, 2025).

Third, attention may be constant across regimes if agents do not know that the regime has
changed (i.e. if Assumption 3 does not hold). Rational inattention models typically assume
that agents know the distribution of shocks they are facing,'? but if this is not the case then
identification via heteroskedasticity would not be subject to the bias characterized above, as
long as the econometrician is still able to identify the regimes ex-post. For the monetary policy
application in Section 5 this is unlikely to hold, as the high-variance regime consists of scheduled
FOMC announcement days. There is also a substantial empirical literature documenting attention
responding to volatility in a range of other contexts (e.g. Andrei and Hasler, 2015; Andrei et al.,
2023; Mikosch et al., 2024; Benchimol et al., 2025). Importantly, if the researcher has access to a
proxy for attention to the relevant variable(s), the variation of attention across regimes can easily be
tested, as I do in Section 5.2 below.

The other situation in which this bias from information acquisition will be negligible is if
expectations are themselves a negligible part of shock transmission. Formally, if 3, = 0, then
equation (28) implies b, oy, as in standard arguments for identification via heteroskedasticity.
However, a vast literature, from Lucas (1972) (and earlier influences) onwards, has shown that
expectations are important in a very wide range of macroeconomic and financial dynamics, so such

instances where every variable in a VAR is independent of attention are likely to be rare.'?

12See Ellison and Macaulay (2021) for an example where this is not the case.

3A further mechanical knife-edge case arises when ai; and 3, are collinear, i.e. when a; = 13, for some scalar
k. The impact vector then varies in magnitude across regimes but not in direction. The covariance difference matrix
remains rank one, and standard heteroskedasticity-based identification recovers the correct direction of the impact
vector. This case is unlikely to hold exactly in practice but illustrates that the bias stems from rotation of the impact
vector, not merely rescaling.
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3.7 Relationship with specification tests

Assumption 1, which I have shown above is affected by rational inattention, is often simply imposed
in practical applications. However, in principle it is possible to test it in some contexts. | therefore
discuss if and how the bias due to endogenous information acquisition outlined above could be

detected in these tests.

Multiple regimes and overidentifying restrictions. When more than two variance regimes are
available, Assumption 1 implies that all pairwise differences Q) — Q*) must be rank one and share
a common eigenvector. These restrictions are overidentifying: they imply that the eigenvectors of
QY — QM coincide across all 7, k.

Under endogenous attention, these restrictions are generically violated. The reduced-form

covariance differences are given by
Qv — o = o2 (o +778) (a1 + 77 8,) — oi(ar + 7 68;) (n + 77:6,), (34)

which does not share a common rank-one factorization across 7, k unless the vectors {a; +773; }5_,
are all collinear. Thus, even with arbitrarily many regimes, there is in general no regime-invariant
impact vector that rationalizes the joint behavior of the reduced-form covariance matrices.

In principle, the overidentifying restrictions that arise when more than two variance regimes are
present could be used to test for whether the VAR parameters are constant across regimes. Such tests
could detect the specific failure of Assumption 1 generated by endogenous information acquisition
(see e.g. Rigobon, 2003, for an example of such a parameter-stability test). However, in practice,
these tests often lack power in the sample sizes typical of macroeconomic applications. As Lewis
(2021, 2022) highlights, identification via heteroskedasticity is frequently ‘weak,” meaning that
any statistical signal from variance changes is often drowned out by sampling noise. Economically
significant shifts in the impact matrix B due to endogenous attention may still therefore escape

rejection in parameter-stability tests.

Rank-one restrictions. If the impact matrix B is invariant across regimes and only the variance
of a single structural shock changes, then the difference in reduced-form covariance matrices
AQ = QY — QM js a rank-one matrix. Equivalently, AS2; 1, has exactly one nonzero eigenvalue
in population.

By contrast, under the data-generating process described above, A€2; ;. is generically of rank

two whenever a; + 773 and a; + 753, are linearly independent. Hence, the rank-one condition
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required for heteroskedasticity-based identification fails in population, not merely due to sampling
error but as a consequence of endogenous information acquisition.

While formal tests for the rank of the covariance difference matrix exist (e.g. Robin and Smith,
2000; Chen and Fang, 2019), they face similar limitations to the multiple-regime based tests
described above. The rational inattention mechanism explored in this section implies a rank-two
structure for AL2; , but the second non-zero eigenvalue may still be small relative to the estimation
error of the covariance matrices. In this context, a failure to statistically reject the rank-one null in
Robin-Smith style tests does not confirm that the impact vector is constant. It may simply reflect that
the attention-driven distortion, while sufficient to bias the point estimate, is difficult to distinguish
from sampling noise using second moments alone. In the application to monetary policy in Section
5, I do indeed find that A€, ;. has an eigenvalue structure consistent with the rational inattention

model, but that these eigenvalues are generally small and estimated somewhat imprecisely.

4 Bias correction

The variation in the impact matrix across regimes highlighted above depends structurally on the
attention of relevant agents in the economy. In this section I propose two ways of correcting this
bias. The first can be used if the researcher has access to a proxy measure of agent attention in
each regime, such as internet search data or newspaper article counts. The second exploits variation
across more than two variance regimes. Appendix B contains the results of simulations in which the
ground truth is known, showing that both methods accurately recover the true impulse responses in

each variance regime in finite samples.

4.1 Correction Method 1: using an attention proxy

Geometric preliminaries. The observed difference between two reduced-form covariance
matrices across regimes (AQy = QU _ Q(L)) is defined in equation (34). If Assumption
1 held, this difference matrix would be rank 1, with one non-zero (positive) eigenvalue (Rigobon,
2003). However, with endogenous attention, Assumption 1 fails and AQy ;, is rank 2, with two
non-zero eigenvalues. More specifically, since Ay ; is the difference of two rank-1 positive
semi-definite matrices, there will be one positive and one negative eigenvalue.

The eigen-decomposition of A€2y 1, can be written as

AQH,L = )\1U1U/1 + )\QU/QUIQ (35)
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where \; > 0 > )\, are the eigenvalues, and u;, us are the corresponding eigenvectors. The true
scaled impact vectors, which I denote wy = oy (o + 753;) and wy, = oy (a + 77 3;), must lie
in the plane spanned by u; and wu,.

With this, we can therefore characterize the set of all candidate impact vectors that are consistent
with the observed covariance difference. The solution to wyw}, — wrw) = Ajuju)] + Agugul is

given by a hyperbolic rotation of the eigenvectors:

wir(6) = /A1 cosh(¢)uy + /| Xa| sinh(¢)us (36)
wr(¢) = \/A_lsinh(gb)ul + /| \2| cosh(@)us (37)

where ¢ € R is an unknown rotation parameter. Identification of the true IRFs reduces to pinning

down the scalar ¢.

Using an attention proxy. From Lemma I, we can write the ratio of structural shock variances

across the two regimes as
2
o 1—7
r=-"=2= L. (38)

If we observe the relative levels of (in)attention, we can therefore infer the relative structural shock
variances, which are not typically observed in Rigobon (2003)-style exercises.
With this in hand, we can now solve for ¢ and thus the bias-corrected IRFs, if we impose two

further restrictions on the structure of transmission.

Assumption 4 (Attention-invariant variable) The effect of the shock of interest on one of the

variables in the system on impact is unaffected by attention: (3 = 0 for one specified variable k.

Assumption 5 (Known attention direction) The effect of attention on the impact effect of the
shock of interest can be signed for one of the variables of the system: we can specify either 3, ; > 0

or p1; < 0 for one variable j.

Assumption 4 requires that there is at least one variable in the system for which the transmission
on impact is purely mechanical, and does not depend on expectations, thus /3; ;, = 0. The dynamic
effects can still depend on attention through the impact effects on other variables, which then feed
in to variable k£ over time through lags of ¥, in the VAR. In monetary policy applications, this
attention-invariant variable could plausibly be the policy rate, which moves due to the policymaker
actions whether or not people pay attention to them. We use this restriction to identify the rotation

parameter ¢ in equations (36) and (37), and discuss it further below.
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In general, there will be two roots to the resulting equation, resulting in two possible values
for ¢. Assumption 5 is then employed to select between them. If economic theory suggests that a
particular variable should respond more strongly on impact to a shock when agents are paying more
attention, this provides the necessary restriction. As we are selecting between only two possible
roots, we do not need to form a prior on the magnitude of this attention effect. In the running
monetary policy example, one could argue that the impact of monetary policy on long-term yields
should be larger when agents pay attention to policy, as then their expectations of future interest
rates will adjust more strongly.

With these two assumptions, we proceed in the following way. If 3; , = 0, then we have that

the impact of the shock on that variable is invariant across regimes:

W,k (P) _ wr, k(@)

OH ar

— wHk(¢) = \/;ka(Cb) (39)
Substituting equations (36) and (37) into (39) yields a linear equation in tanh(¢):

\/A_lul,k + /| A2| tanh(@)ug s = /7 <\/)\_1tanh(¢)u17k + |>\2|u2,k> (40)

_ \/)\1U1,k - \/T|>\2|u2,k
7“/\1U1,k -V |>\2|U2,k

The quadratic nature of the underlying problem yields two potential roots for ¢, corresponding

— tanh(¢") (41)

to the sign ambiguity of the eigenvectors. To ensure a unique and economically meaningful solution,
we normalize the recovered vectors such that the impact on a chosen anchor variable has a given
sign, and then use Assumption 5 to select between the roots of ¢*.

These restrictions, and equation (41), therefore allow us to recover ¢*, and thus a; + 75,3,
and o + 77 3,. From these we can compute bias-corrected impulse response functions for both

regimes.

Sensitivity. If Assumptions 4 and 5 hold exactly and r is measured without error, this method
exactly corrects for the bias derived in Proposition 2 in population. Appendix B also shows that in
finite samples of the size used in Section 5, the correction recovers the true impulse responses with
little error.

In practice, however, both Assumption 4 and the assumption that we can observe a perfect
attention proxy may be difficult to satisfy precisely. In simple monetary policy contexts, as
mentioned above, the policy rate might plausibly be attention-invariant on impact as required, but

outside of this case such a variable may be harder to find. Similarly, available measures of attention
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are known to be noisy in many contexts, which may lead to inaccuracy in the calibrated ratio 7.
For this reason, in Appendix B I test the sensitivity of the bias correction to violations of
Assumption 4 and errors in the calibration of r. I simulate datasets, varying the true impact effect of
attention for the variable assumed invariant (/3; ;) or the true variance ratio r. In each simulation,
I estimate a VAR and conduct the bias correction using the (now incorrect) baseline assumptions.
The results indicate that the correction is robust to moderate errors in (3; ; and . When |3 x| is
within 10% of the attention effect on other variables in the system, or when 7 is mismeasured by
10%, the method still delivers more than 90% of the improvement over the uncorrected estimator
that would arise under exact assumptions. The method therefore remains valuable even when the

identifying assumptions are not exact.

4.2 Correction Method 2: multiple regimes

While Method 1 provides a closed-form solution, it relies on the existence of an attention-invariant
variable (Assumption 4), and of a reliable proxy for attention. In applications where rational
inattention permeates all variables in the system (i.e., 51 has no zero elements), or where attention-
related data is unavailable, this will not be appropriate. I show here that observing more than two
variance regimes allows for an alternative bias correction, which exploits the geometric constraints
implied by the attention mechanism.

Specifically, consider the case where we observe three variance regimes, s € {L, M, H}. The

structural impact vector in any regime s is given by:
vs = a1+ 7,0 (42)

Geometrically, this equation implies that the impact vectors {vy, vy, vy } must be collinear. They
lie on a single line in R™ with intercept «; and direction (3;. This collinearity is a strong over-

identifying restriction which allows us to estimate the structural parameters for each regime.

The estimator. First, normalize the parameters specific to the low-variance regime to 02 = 1 and
71, = 0, effectively interpreting o as the baseline transmission and 7 as the relative increase in
attention in the medium- and high-variance regimes. We can then define the vector of remaining
deep structural parameters as © = [}, 81, Tar, TH, 037, 05 -
The theoretical difference between the covariance matrix in regime s and the baseline regime L
is:
AQ, 1(0) = 0% (ay + 7.61) (a1 + 76 51) — ) (43)
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Our aim is to estimate ©. However, there still remains a scale indeterminacy between 7, and ;:
doubling /3; and halving both 7), and 7 does not affect the resulting AS) ;. We therefore add one
further normalization, that 7; = 1. If there are n variables in the vector y; (i.e. if AQ, ; is n X n),

this leaves us with 2n + 3 parameters in © to estimate: n elements of 1, n elements of 31, plus 75,

2 2
Ors O+

We estimate © by minimizing the distance between these model-implied moments and the data:

O =argmin Y [vec(AQ2F) — vee(AQL(O))]}, (44)

se{M,H}

where W is a positive definite weighting matrix.

Identification conditions and effective degrees of freedom. A crucial feature of the model is that
while variance changes are driven by a single structural shock, the resulting covariance difference
matrices A€, ;, are of rank two (Proposition 2). This structural constraint implies that the elements
of A€, , are not independent; for n > 3, the matrix contains only 2n — 1 independent pieces of
information rather than the usual n(n + 1)/2.

Accounting for this rank constraint, identification requires:

22n—1) > 2n+3 (45)
——— —
Effective Moments Free Parameters

which implies n > 2.5. For a two-variable VAR (n = 2) this method cannot therefore identify the

parameters © without further information. For n > 2, however, this is not necessary.

Incorporating external information. In principle, the researcher could combine the approach
above with proxy measures of attention, as used in Method 1 above. Restrictions on 75 /7, for
example, reduce the dimensionality of the estimation problem, thus making it possible to estimate
O even with n = 2. With n > 2, such external information may still be helpful in making the

estimates of «; and 3; more precise.

5 Empirical evidence: attention to monetary policy

I now apply the insights developed above to the analysis of unconventional monetary policy shocks
at the zero lower bound (ZLB). This is an obvious testing ground for the methods developed above,

as Wright (2012) provides a canonical use of identification via heteroskedasticity in precisely
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this context. Understanding the transmission channels behind unconventional policies is also of
relevance to policymakers in the current period, as they embark on quantitative tightening policies.

I follow Wright (2012) in using daily data on 6 asset prices to estimate the effects of
unconventional monetary policy shocks at the zero lower bound, assuming that monetary policy
shocks have a greater variance on FOMC announcement days than non-announcement days.'* 1
extend the Wright (2012) sample to the full ZLB period (November 3 2008-December 9 2015). The
variables are: the 10-year and 2-year zero-coupon Treasury yields, 5-year and 5-to-10-year forward
TIPS breakeven inflation rates, and Moody’s AAA and BAA corporate bond yields. '

I start with two tests of the rational inattention model of Section 3: first, I show that the
difference between the reduced-form covariance matrices in the high and low variance regimes has
an eigenvalue structure that is inconsistent with Assumption 1, but which would be predicted by
the rational inattention model. Second, I use Google Trends searches as a proxy for attention to
monetary policy, and find that attention is indeed systematically higher on announcement days,
even when conditioning on the magnitudes of the ‘news’ realized at each event. This is precisely
the prediction of Lemma 1 in Section 3. Finally, I apply the bias-correction method developed
in Section 4.1 to the VAR identified via heteroskedasticity, and find substantial differences in the

estimated effects of monetary policy, especially on expected inflation.

5.1 Eigenvalue check

Under the standard identifying assumption (Assumption 1), the difference in reduced-form
covariance matrices between announcement and non-announcement days AQy ;, = Q) — @) g
a rank-one positive semi-definite matrix with exactly one positive eigenvalue. In contrast, under the
rational inattention model developed in Section 3, this difference matrix is as defined in equation
(27). Since this is the difference of two rank-one matrices, it generically has rank two, with one
positive and one negative eigenvalue.'®

I test this prediction using the data outlined above. Following the specification in Wright
(2012), I estimate a VAR(1) on the six variables and compute the covariance matrices of the

residuals separately for announcement days (Q(H )) and non-announcement days (Q(L)). The one

“Wright (2012) also includs the days of 5 landmark policy speeches in the high-variance regime. In the absence of
an objective criteria for which speeches should count in the later part of the sample (after Wright (2012) was written), I
restrict myself to scheduled FOMC announcement days only. A similar identification scheme is explored as a robustness
check to the main results in Nakamura and Steinsson (2018).

5The data are obtained from the Federal Reserve Bank of St. Louis replication archive, accessible at
https://fredaccount.stlouisfed.org/public/datalist/1111. The sample period contains 56 announcement days. The
Wright (2012) subsample ends on Deptember 30 2011, and contains 23 announcement days.

1%The rank is exactly two when bgH) and bgL) are not collinear, which holds generically when 3, # 0 and 77; # 77 .
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Table 1: Eigenvalues of the Covariance Difference Matrix

(D 2) 3) “)

Point Estimate ~ Bootstrap 95% CI ~ Point Estimate ~ Bootstrap 95% CI
A1 (smallest) —0.0027 [—0.0123, —0.0010] —0.0058 [—0.0294, —0.0029]
A2 —0.0013 [—0.0026, —0.0001] —0.0033 [—0.0060, —0.0005]
A3 —0.0001 [—0.0005, 0.0001] —0.0002 [—0.0013, —0.0000]
A4 0.0001 [—0.0001, 0.0007] 0.0000 [—0.0002, —0.0016]
As 0.0009 [0.0001, 0.0036] 0.0018 [—0.0000, 0.0091]
A6 (largest) 0.0099 [0.0023, 0.0224] 0.0177 [0.0018, 0.0430]
Sample period Z1LB Z1LB Wright Wright

Notes: Eigenvalues of AQy 1 = QU — L) from VAR(1) residuals. Bootstrap confidence intervals based on 2,000 replications. All samples
exclude December 1, 2008 (see text).

change I make is that I exclude the data from December 1, 2008, when Ben Bernanke made a
speech indicating that the Federal Reserve would begin buying Treasuries. On this day the 5-year
TIPS breakeven inflation rate jumped up by 192 basis points, which is 21 times larger than the
standard deviation of daily changes over the sample period. This one outlier observation therefore
substantially inflates the variance of breakeven inflation on non-announcement dates, giving rise to
concerns about weak identification (Lewis, 2022)."7

Table 1 reports the eigenvalues of the covariance difference matrix AQy ;. Columns 1 and
2 show the results for the full ZLB sample. The matrix has three negative eigenvalues, with
the smallest equal to —0.0027. Under the null hypothesis of constant transmission (Wright’s
identifying assumption), all eigenvalues should be non-negative with at most one strictly positive.
The presence of negative eigenvalues suggests a violation of this constant-transmission assumption.
For comparison, columns 3 and 4 show the results from the restricted subsample used in Wright
(2012), which show similar patterns.

To assess statistical significance, I construct bootstrap confidence intervals by resampling
announcement and non-announcement days separately with replacement. The 95% confidence
interval for the minimum eigenvalue in the full ZLB sample is [—0.012, —0.001], which lies entirely
below zero. This rejects the rank-one null hypothesis at the 5% significance level. Moreover, 100%
of bootstrap replications produce at least one negative eigenvalue, indicating that this finding is
robust to sampling uncertainty.

The two eigenvalues of largest magnitude—one positive (0.010) and one negative (—0.003)—

together account for 84% of the total sum of absolute eigenvalues. This concentration is consistent

171f T include this outlier observation, the results in Table 1 are qualitatively unchanged: the largest eigenvalue in
magnitude is 0.0099 and the second largest is —0.0027, with the 95% bootstrapped confidence intervals for both entirely
above and below 0 respectively.
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with an approximately rank-two structure, as predicted by the rational inattention model. Eigenvalues
A3 — A5 are an order of magnitude smaller and likely reflect estimation noise. ), is less clearly
near-zero, possibly suggesting some other failure of Assumption 1 beyond the optimal information
choice studied here.

The finding of negative eigenvalues in A2y 1, is consistent with the mechanism proposed in this
paper. If agents pay more attention to monetary policy on announcement days (7;; > 77 ), then the
transmission of policy shocks differs across regimes. The covariance difference matrix is no longer
proportional to a single outer product, and the standard heteroskedasticity-based identification
procedure recovers a pseudo-parameter rather than the structural impact in either regime. The next
subsection provides complementary evidence that attention to monetary policy does indeed spike

on FOMC announcement days.

5.2 Attention to monetary policy between regimes

In this monetary policy context, the bias highlighted in Proposition 2 and Corollary 2 arises whenever
decision-makers pay more attention to monetary policy on FOMC announcement days than on
non-announcement days. In this subsection, I test this directly, using Google Trends search volume
as a proxy for attention, as in e.g. Da et al. (2011, 2015).

Specifically, I use the t rendecon procedure and package from Eichenauer et al. (2022) to
construct a daily series of Google searches for the term “Federal Reserve” from January 1 2006
to June 30 2019."® Since Google Trends does not provide daily data over this length of sample,
the index is constructed by splicing together multiple Google Trends queries, with adjustments to
ensure consistency of units across windows (see Eichenauer et al. (2022) for a detailed explanation
of the methodology, and Wang (2025) for a similar procedure for searches for the FOMC). This
means that the resulting index is not exactly scaled to be within [0, 100] as is typical for stand-alone
Google Trends queries. The interpretation, however, is similar, as 98.8% of the observations lie in
this range.

Table 2 shows the average index values on announcement and non-announcement days for the
ZLB sample that is the main sample of interest, as well as the shorter sample analysed by Wright

(2012), and the full sample that includes non-ZLB periods. The patterns are similar across samples,

18Since this series requires multiple calls to the Google Trends API, it can only cover a single keyword at a time,
and cannot sum multiple keyword search intensities. Constructing an index from multiple t rendecon queries would
not produce an interpretable result, as each search term would have its own scale. However, from the monthly data
available directly from Google Trends, I find that ‘Federal Reserve’ has more than 10x the search activity of ‘FOMC,
and more than 20x the activity of ‘Federal Funds Rate’ over the 2006-2025 period. As a robustness check, in Appendix
C I re-run the analysis of Table 2 for the search term ‘Monetary Policy,” which has approximately 15% of the search
activity of ‘Federal Reserve.” All results are robust.
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with search activity approximately two-thirds higher on announcement days. Even in the relatively

short Wright (2012) subsample, these differences are strongly significant.

Table 2: Attention to the Federal Reserve: FOMC vs. Non-FOMC Days

Observations Mean Search Index
Sample FOMC Non-FOMC FOMC Non-FOMC Difference t-statistic
Wright (2008-2011) 23 1,039 86.106 49.751 36.356 9.011
ZLB (2008-2015) 56 2,537 86.297 50.132 36.164 14.141
Full (2006-2019) 113 4,816 88.975 46.427 42.547 22.882

Notes: Google Trends search index for “Federal Reserve” constructed using the Eichenauer et al. (2022) methodology. FOMC days are scheduled
Federal Open Market Committee announcement days. The ¢-statistic tests the null hypothesis that mean attention is equal across FOMC and
non-FOMC days.

While indicative, the greater search volume on announcement days is not itself enough to
reject the assumption of invariant transmission (Assumption 1). If attention rises only with shock
realizations (not variances), then we would see greater attention on announcement days because the
average shock magnitude is greater on those days, but there would be no difference in the impact of

a unit shock in each regime. To test if this is the case, I therefore estimate
log(At) = o+ 6FOMC,§ + ’}// |St‘ + 5/Xt + Et, (46)

where A; is the daily search index (trimmed to drop the smallest and largest 1% of observations),
FOMC, is an indicator equal to 1 on FOMC meeting days, and |S;| are measures of realized
monetary policy shocks.!” Specifically, I use the absolute values of the Federal Funds Rate, Forward
Guidance, and LSAP factors from the high-frequency identification in Swanson (2021). X} includes
controls for day-of-week effects, month fixed effects, and two lags of the dependent variable. The
trimming of A; removes the small number of negative values, so using log(A;) does not involve any
further sample restrictions.

The rational inattention mechanism studied above implies that attention to monetary policy
should be higher on announcement days irrespective of the realized shocks. That is, the coefficient
B > 0. If instead the increased searches on announcement days are entirely due to shock realizations,
and not the volatility regime, then § = 0 and all differences in attention between regimes are
captured by v > 0. Since there are only a small number of announcements in the period analysed by
Wright (2012), I estimate this regression only for the ZLB sample (2008-2015) and the full sample
(2006-2019).

19The sample trimming is completed separately for each sample period, so the ZLB-period regressions are run for the
days in which A; is in the middle 98% of the observations for that period.
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The results are presented in Table 3. The first column presents the model omitting FOMC,
and |S;|. Column 2 adds FOMC;, and column 3 adds |S;|. As predicted by the rational inattention
model, [ is large and significantly greater than O across specifications where FOMC; is included.
The v coefficients on absolute monetary policy shocks are typically close to 0 and not significant,
with the exception of LSAP shocks in the ZLB period. Indeed, it is reassuring that this element of ~
is positive and significant, as it provides a sense-check on the attention measure: during the ZLB,
when asset purchases were a large and unprecedented feature of US monetary policy, we should
expect more attention on the Federal Reserve after large LSAP shocks.

A further check that attention is however determined largely by the regime (announcement day
or not) rather than the shock realization comes from studying the R? of these regressions. Adding
the controls for shock size in columns 3 and 6 only adds a minimal amount to the k2, an order of
magnitude less than is added by the inclusion of FOMC; in columns 2 and 5. This adds further
support to the conclusion that the majority of differences in search volumes between regimes are

not driven by the size of the shock realization.

Table 3: Attention to the Federal Reserve

ey 2) 3) 4) (&) (6)

FOMC day 0.223**  0.163** 0.3197*  0.271
(0.025) (0.074) (0.026) (0.052)
Fed funds rate shock (abs.) -0.217 -0.051
(0.439) (0.263)
Forward guidance shock (abs.) 0.044 0.091
(0.041) (0.057)
LSAP shock (abs.) 0.186*** 0.023
(0.054) (0.079)
Observations 2,542 2,542 2,542 4,822 4,822 4,822
R-squared 0.7869 0.7909  0.7913 0.7921 0.7986  0.7987
Sample period Z1B Z1B Z1B Full Full Full

Day-of-week and month fixed effects, and two lags of log(attention), included in all specifications.
Robust standard errors in parentheses.
*p < 0.10, % % p < 0.05, * * *p < 0.01

26



5.3 Bias-corrected IRFs

I now apply the bias-correction of Section 4.1 to the structural VAR specified as in Wright (2012).%°
As described above, this requires two extra assumptions beyond those currently made, and an

observation of the relative (in)attention between variance regimes. I choose these as follows.

Assumption 4. The impact effect of monetary policy shocks on the 2-year Treasury yield is

unaffected by attention.

Assumption 5. The impact effect of monetary policy shocks on the BAA corporate bond yield is

larger in magnitude in the high-variance/high-attention regime.

Attention measure. In the Google Trends series above, the mean of the search activity index is
86.3 in the high-variance regime, and 50.1 in the low-variance regime. Taking an index of O to

reflect no attention (7;; = 0) and 100 to reflect complete attention (7;; = 1), and assuming a linear

TE _1-0.501 — 364

. . . . 1-
relationship between the search index and 7;;, we obtain —F = =53
- .

Discussion. The ideal choice of attention-invariant variable for Assumption 4 in monetary policy
settings is the policy rate, which moves mechanically with policy actions. However, since my
purpose is to identify the effects of unconventional monetary policy shocks at the zero lower bound,
the sample is chosen such that the target federal funds rate is constant at the lower bound (0.25%) in
all periods, and so is not included in the VAR. However, prior literature provides a mechanism that
suggests the 2-year Treasury yield is a plausible alternative.

Wright (2012) argues that the unconventional monetary policy shocks in the sample operate
largely through the behavior of preferred-habitat investors and sophisticated arbitrageurs, as in
models such as Vayanos and Vila (2021). This mechanism works through portfolio rebalancing
by institutional investors with mandates tied to specific maturities, and arbitrageur responses to
resulting price pressure. Since these portfolio adjustments are largely mechanical responses to
changes in relative bond supplies they do not require investors to form expectations about the

macroeconomic implications of policy.

20Correction method 2 described in Section 4.2 is not applicable here as we only observe two variance regimes. For
robustness checks Wright (2012) further divides his high-variance regime into “especially important” days and less
important days, but this is based on the realized policy changes on those days, not on the volatility that was known
ex-ante to market participants and other economic agents. This extra division would not therefore satisfy Assumption 3
that is required for the model developed in this paper to be applicable.
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This mechanism is likely to be especially dominant for shorter maturity assets. Assets with
longer maturities may also be affected by the impact of policy announcements on expectations, both
of future macroeconomic developments (Boneva et al., 2016; Melosi, 2017) and monetary policy
(Bauer and Rudebusch, 2014; Bhattarai et al., 2023).?! For this reason I impose attention invariance
on the 2-year Treasury yield rather than the 10-year Treasury yield.

Despite these arguments, Assumption 4 remains rather strong ex-ante. I provide ex-post
validation at the end of this subsection, along with a robustness test relaxing the assumption.

For Assumption 5, I consider the impact of monetary policy shocks on corporate bond yields.
Part of this transmission is likely to occur through monetary policy’s effect on credit spreads: when
investors pay closer attention to monetary policy announcements, they update more strongly on
what the announcement signals about the Federal Reserve’s economic outlook and future policy
plans. This would lead them to extract more information about the likely path of the economy,
and hence corporate default probabilities, than one who observes policy changes only passively
through their effect on Treasury yields. This expectational channel should be particularly prevalent
for higher-risk bonds, so I impose the assumption on the BAA yield.

Note that Assumption 5 is only used to select between the two roots of equation (41). As such,
there are a range of different possible assumptions that would deliver identical impulse response
estimates. For example, Figure 1 below shows that assuming attention amplifies the impact of
monetary policy shocks on AAA corporate bond yields, rather than BAA yields, would select
exactly the same root for ¢*, and thus would imply exactly the same impulse responses. Indeed,
while the impact response of the AAA yield is also amplified by attention, the amplification is
smaller than in the BAA yield, consistent with the default-risk mechanism outlined here.

Finally, the linear mapping between Google Trends searches and attention is chosen for its
simplicity and transparency. However, the core results below are robust to alternative mappings.
Appendix C re-computes the same bias-corrected IRFs assuming several other mappings, and in all
cases the bias correction substantially alters the results, with the same qualitative changes as those
displayed below. Note that in all such mappings, I only make use of the ratio between (in)attention

across regimes, so scaling by some baseline measure of attention leaves the results unchanged.

Results. Figure 1 shows the results. The un-corrected estimates following the specification in
Wright (2012) are shown in black. I normalize the shock such that it delivers a 25 basis point decline

in the 2-year Treasury yield on impact.

2'Wright (2012) emphasizes the latter channel, noting that “LSAPs could also work in other ways, such as by affecting
agents’ expectations of the future course of monetary policy”(p. F447).
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Figure 1: Impulse response functions with and without the correction for endogenous attention.
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Note: Impulse responses to an unconventional monetary policy shock identified via heteroskedasticity, following Wright (2012). The black line
shows the uncorrected estimate assuming regime-invariant transmission (Assumption 1), with the shaded region indicating 68% bootstrap confidence
intervals, constructed using the Kilian (1998)-adjusted bootstrap. The Kilian bias adjustment is also applied to the point estimates. The red line shows
the bias-corrected impulse response for the high-attention regime (FOMC announcement days), and the blue line shows the bias-corrected response
for the low-attention regime (non-announcement days). Bias correction follows the method in Section 4.1, imposing that the impact effect on the
2-year Treasury yield is attention-invariant (Assumption 4) and that attention amplifies the impact effect on BAA corporate bond yields (Assumption
5). The responses are normalized such that the 2-year Treasury yield falls by 25 basis points on impact in all cases. Sample: November 2008 to
December 2015, excluding December 1, 2008 (see text). The VAR is estimated with one lag on daily data.

The corrected estimates for the high and low variance regimes are shown in red and blue
respectively. Since Assumption 4 implies that the 2-year Treasury yield is the same on impact
in both regimes, I use the same normalization of the shock size in these corrected IRFs as in the
uncorrected estimates.

For all variables, the uncorrected IRFs do not typically lie within the corrected IRFs for the two
regimes. This is a consequence of the fact that the uncorrected IRFs are non-convex combinations
of the true IRFs (Proposition 2). The bias-corrected IRFs are also not, in general, scaled versions of

the uncorrected IRFs or of each other. Even though inattention only affects the impact matrix B in
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equation (1), it affects the impact of the shock on each of the variables in the VAR differentially. In
the first period after the shock, the differential impacts then imply differential changes in the lags of
the outcome vector, thus leading to sometimes very different dynamics across regimes.

The precise way in which impulse responses differ from their un-corrected counterparts, and
between regimes, has implications for the overall assessment of unconventional monetary policy

shocks and for the role of expectations and attention in their transmission.

Overall shock transmission. The results in the top row of Figure 1 suggest that expansionary
unconventional monetary policy shocks have less persistent effects on Treasury yields than would
be estimated from a standard identification via heteroskedasticity, particularly in the low-attention
regime where the differences are large.

The figure also shows unconventional policy shocks having larger positive effects on 5-year
inflation expectations than in the uncorrected estimation, but more muted or even negative effects on
longer-term expectations in the initial month after the shock. This initial rotation in breakevens is
similar to what Wright (2012) found in his reduced sample, though it is substantially stronger here.

Finally, the transmission to corporate bond yields is also less powerfully expansionary than
a standard estimation would suggest. On impact, the difference is largest for BAA yields, but
over time these responses converge on each other, while the relative weakening of the AAA yield
response persists over time.

These features are important, because they reflect the key transmission channels through which
unconventional policies are hypothesized to operate. Forward guidance and quantitative easing
directly reduce long-term Treasury rates. Portfolio rebalancing channels imply those changes in
government bond yields spill over to other assets, including corporate bonds, making it easier and
cheaper for firms to raise financing and expand (Gagnon et al., 2011; Vayanos and Vila, 2021).
Signalling channels imply that expansionary policy increases expected inflation, decreasing real
interest rates and thus stimulating consumption and investment (Bhattarai et al., 2023).?

The results obtained in Figure 1 imply that, on average, the portfolio balance effect is weaker
than the uncorrected estimation would suggest, and the signalling effect is stronger, at least for the
short-to-medium term inflation expectations captured by the 5-year breakeven rate. For longer-term
inflation expectations, the estimated effects are also greater than the in the uncorrected estimation,
but only after the first month after the policy shock. The comparison between the corrected impulse
responses in high- and low-variance regimes is informative about the mechanisms behind these

results.

22See Dell’ Ariccia et al. (2018) and Kuttner (2018) for reviews of this literature.
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Before turning to this, it is worth noting that the deviations from the un-corrected IRFs are
much smaller in the high-variance regime. For some questions, the high-variance/high-attention
regime IRF may indeed be the relevant object: if the researcher is interested in the effect of policy
decisions made on scheduled days then the high-attention regime is the appropriate one to consider.
However, for other questions the researcher may be interested in monetary policy in general, such
as from speeches that are not highly anticipated before they occur. In this case, the low-attention
regime is also relevant. Indeed, this constitutes the vast majority of days in the sample. And in this
case the uncorrected IRFs are notably biased for all variables. Moreover, even if transmission on
scheduled announcement days is the relevant object for a researcher, comparing corrected IRFs
in high- and low-variance periods can help to shed light on the transmission channels behind the
estimated effects, which is of interest even to those only considering shocks that arrive in a single

regime.

Expectations and attention as drivers of policy transmission. Figure 1 does not only give
implications for the understanding of unconventional monetary policies on average. By producing
separated impulse responses in conditions of high and low attention, it also allows us to learn
about how much of unconventional policy transmission comes through channels associated with
the updating of expectations, mediated through possibly limited attention. This also has the extra
benefit of aiding the interpretation of the average results.

In general, the large gaps between the corrected IRFs in the high and low variance regimes
suggest that a substantial portion of the transmission of unconventional monetary policy comes
through expectations, rather than mechanical balance sheet of no-arbitrage effects. The horizon at
which attention affects transmission, and whether it amplifies or dampens the shock’s effects, vary

across variables.

Treasury yields. On impact, unconventional monetary policy shocks have the same impact
on the 2-year Treasury yield regardless of the regime. This holds by construction (Assumption 4).
However, the impact is also the same across regimes for the 10-year Treasury yield, and this is
not imposed by the bias-correction procedure. This is (i) reassuring that placing Assumption 4
on the impact effect on a Treasury yield is appropriate (see Robustness discussion below); and
(i1) indicative that the impact of unconventional monetary policy on Treasury yields is largely
independent of expectations, consistent with theories of preferred habitat investors rebalancing
portfolios (Vayanos and Vila, 2021).

However, after the initial day of the shock, the responses of Treasury yields begin to diverge
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between regimes. Specifically, they are substantially less persistent in the low-variance regime,
when attention to monetary policy is weaker. 50 business days after the shock, the effects on the
2-year yield are approximately a third smaller in the low-variance than in the high-variance regime.
For the 10-year yield, the low-variance regime response is only half as strong as the high-variance
regime response at this horizon. This suggests that while the effect of unconventional policy on
Treasuries on impact may be mechanical, expectations come to play an important role in the
following days. Attention causing greater persistence in Treasury yields is consistent, for example,
with unconventional policy shocks in part signalling future policy actions by the Federal Reserve,

as explored theoretically by Bhattarai et al. (2023).%}

Corporate bond yields. The AAA corporate bond yields follow similar patterns to Treasury yields:
while there is a small amplifying effect of attention on impact, the IRFs for the two regimes diverge
over the following days, with low attention associated with substantially less persistent shock
effects. This is as would be expected from portfolio rebalancing mechanisms, where high-quality
corporate bond yields follow Treasury yields. The fact that attention amplifies the impact effect of
the unconventional monetary policy shock is also consistent with the arguments put forward in
the discussion of Assumption 5 above, that when investors are more attentive to an expansionary
monetary policy shock they revise their default probability expectations more strongly downwards,
further reducing corporate bond yields.

BAA corporate bond yields, however, behave quite differently. On impact, attention substantially
amplifies the effect of the shock on BAA corporate bond yields. The impact is more than 25%
stronger in the high-variance regime, compared with 13% impact amplification for AAA bond
yields. This larger amplification from attention is again consistent with the default-expectations
mechanism proposed above, as default probabilities are larger and more salient than for AAA-rated
bonds. Similarly, it could also reflect a role for expectations in the risk-taking channel of monetary
policy (Bauer et al., 2023): if investors paying attention to monetary policy increase their risk
appetite, this would lower credit spreads through the excess bond premium (Gilchrist and Zakrajsek,
2012). In the low attention regime, investors do not observe the change in monetary policy as
precisely, and thus the amplification through risk appetite is weaker.

While this amplification effect initially grows, almost doubling the response one month after
the shock, the effects of attention then die away, and the impulse responses in the two regimes
converge. This suggests that the attention-sensitive component of this transmission is short-lived,

whether it is through default expectations, risk premia, or both. At longer horizons, the effects on

ZIndeed, this is the logic used by Giirkaynak et al. (2005a) and the literature that follows them to separate monetary
policy shocks into “Target” and “Path/Forward Guidance” factors.
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lower-rated investment-grade bond yields are largely driven by forces independent of monetary
policy expectations. If default expectations are the key driver of the initial amplification, this
could for example reflect investor learning about default risk at the firm level, which a range of
information frictions would render sluggish (Mankiw and Reis, 2002; Angeletos et al., 2020).

Breakevens. The impulse responses for breakeven inflation rates show the most striking
differences between high and low variance regimes. The increase in the 5-year breakeven, and
the decrease in the 5-10-year forward, are much more pronounced in the low-variance regime.
Attention and the response of expectations and perceptions of monetary policy therefore weakens
these initial responses of market-based inflation expectations.

While this might initially seem strange, it is actually evidence in favor of the intuitive argument

given by Wright (2012) to explain the similar short-run rotation in breakevens in his results:

There is a rotation of TIPS break-evens, with five-year break-evens rising and 5—10-year
forward break-evens falling. A possible interpretation is that the stronger outlook for
demand boosts the short-to-medium-run inflation outlook, but the fact that the LSAPs
are overwhelmingly concentrated in nominal (rather than TIPS) securities has an

offsetting effect, pushing longer term break-evens lower. Wright (2012), p.F460.

The hypothesis that long-term breakevens are distorted by imperfect arbitrage after large asset
purchases by policymakers would suggest a purely mechanical effect in the initial periods after a
shock.?* The fact that greater attention offsets this rotation in Figure 1 is exactly what one would
expect from such non-expectational mechanisms. The puzzling dynamics die away a month after
the shock, again consistent with the driver being a short-run market friction, not a fundamental shift
in expectations. At longer horizons breakeven inflation is estimated to increase after the shock.

In fact, the results also imply that the short-run effects of unconventional monetary policy shocks
on inflation expectations are substantially greater than a look at raw breakevens data would suggest.
The effect on the 5-10-year forward breakeven inflation is close to 0 on impact in the high-variance
regime, but this is because attention, and the resulting updating of expectations, is offsetting a very
large mechanical effect. This is again consistent with strong signalling effects of unconventional
monetary policies, but only when agents are paying attention to the policy announcements.

These insights are important for understanding the zero lower bound period, but also carry

relevance for policymakers today. Understanding the transmission channels of unconventional

24See Haubrich et al. (2012) and D’ Amico et al. (2018) for discussions of liquidity premia in inflation-linked Treasury
markets. Abrahams et al. (2016) in particular find that variation in risk and liquidity premia were especially important
for forward breakeven inflation during the financial crisis period.
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monetary policy, and how much of that transmission depends on expectations, will be important
as central banks embark on quantitative tightening (QT) in the years to come. In particular, the
powerful role for expectations and attention found above suggests that communication policies will
be of great importance to the effects of QT. The most surprising implication is that if policymakers
wish to conduct QT without strong effects on Treasury yields or corporate bond yields, they should
not communicate in advance, to aim for low attention to the policy changes. This would, however,
come with greater short-run volatility in inflation expectations. There may also be other reasons
why communication would be desirable (Haldane et al., 2021): the results here then simply suggest

that this communication also may have costs in the markets for government and corporate bonds.

Robustness. While the results presented here align with theoretical developments in the study of
unconventional monetary policy, it should be reiterated that they rely on the Google Trends proxy
for attention, and its mapping into the model object 7. Both of these steps are necessarily imperfect:
despite its increasingly common use, Google Trends is only a noisy proxy for attention, and the

mapping into the model is stylized. In Appendix C I therefore repeat the bias correction in Figure 1

for alternative calibrations of r = 11:; , adjusting the Google Trends sample and the mapping into
the model. All results are qualitatively consistent with Figure 1.

I also examine the sensitivity of the results to Assumption 4, which imposes that the impact
effect of monetary policy on the 2-year Treasury yield is invariant to attention. The key threat to this
assumption is that monetary policy shocks affect expectations of future policy or macroeconomic
conditions on impact, and that this has an effect on Treasury yields beyond the mechanical portfolio
rebalancing discussed above.

While ex-ante this sounds plausible, two pieces of ex-post evidence suggest that the concern is
small. First, Figure 1 shows that the impact effect of monetary policy shocks on the 10-year Treasury
yield is very similar between regimes, despite the attention invariance only being imposed on the
2-year yield. The corrected high-attention impact effect is within 5% of the low-attention impact,
well within the bootstrap confidence intervals for the uncorrected estimates. This is consistent with
portfolio balance channels initially dominating in long-term assets, and the expectational effects
previously mentioned being minimal. If expectational effects are this small for long-term Treasuries,
they are even more likely to be small for shorter maturities.

Second, in Appendix C I relax Assumption 4, and instead choose the rotation ¢* to minimize the
difference between the effects of attention on impact between the 2-year and 10-year Treasury yields.
This approach is motivated by the hypothesis that Treasury markets of different maturities should

be affected by similar forces. If expectational effects were large in these markets, this approach
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would reveal that, but this is not what I find. On impact, the response of the 2-year Treasury yield
is less than 3% larger in the high- vs low-attention regime. Again, the results are consistent with

Figure 1, suggesting that the main results derived under Appendix 4 are robust.

6 Conclusion

I have argued that endogenous information acquisition affects macroeconometric practice. Standard
models of rational inattention, and a wealth of empirical evidence, predict that economic agents
process more information about variables when their volatility rises. Since information processing
affects the way those agents react to structural economic shocks, the transmission of those shocks
depends on the variance of the process from which they were drawn. This challenges a key
assumption required for structural vector autoregressions identified via heteroskedasticity, that the
responses to structural shocks are constant, even as their distributions shift.

I show that ignoring this mechanism biases impulse responses from heteroskedasticity-based
identification. However, I also show that the bias can be corrected: one method uses external
attention proxies, another exploits variation across three or more variance regimes.

Beyond bias correction, these methods also yield new economic insights. Because attention
reacts to the variance of the structural shocks, the true impulse responses to those shocks differ
between variance regimes. The correction methods recover regime-specific impulse responses, and
comparing them reveals how the updating of expectations contributes to the transmission of the
structural shocks of interest.

I apply these methods to the transmission of unconventional monetary policy at the zero lower
bound in the US, following and extending Wright (2012). I find that the corrected impulse responses
show less persistence in the transmission to Treasury and corporate bond yields, and very different
short-run responses of breakeven inflation rates, than those obtained from a standard identification
that does not correct for endogenous information. Comparing responses across regimes reveals a
powerful role for signalling channels of unconventional monetary policy, especially for long-term
inflation expectations.

The bias mechanism I discuss applies in principle to any heteroskedasticity-based identification,
including Markov-switching and smooth-transition specifications. Developing practical correction
methods for these more complicated settings is a promising avenue for future research. More
broadly, the finding that a common econometric technique embeds implicit assumptions about
information processing suggests that rational inattention may have unexplored implications for

other areas of macroeconometrics.
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A Proofs

A.1 Proof of Proposition 2

Let

— * — *

and define

_ 2 / 2.
AQ = o vgvy — oL VLY.
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Step 1: Reduction to the span of {vy, v }.

For any vector = such that 'vy = 2’v;, = 0, we have
AQx = 0% vy (Vir) — orog(vix) = 0.

Hence, any eigenvector of A2 associated with a nonzero eigenvalue must lie in the two-dimensional

subspace span{vg, vy }. It follows that any such eigenvector can be written as
xr =vy + kvg,

for some scalar k£ € R.

Step 2: Characterization of eigenvectors.
Let z = vy + kvr. Then

AQr = ohvg(Viyr) — otvp(vix) = oqvg(Cx + kD) — o3vp (D + kCp),

where
Cs = vlvg, D = vy,
If x is an eigenvector with eigenvalue p, then AQx = px, which implies

—03(D + kCyp) = pk.

Eliminating p yields
—07(D + kCp) = koy;(Cy + kD),

which rearranges to the quadratic equation (29). If D = 0, this quadratic has two real roots, each

corresponding to an eigenvector direction of AL in span{vy, vy }.

Step 3: Identification of the “naive’’ estimator.
The standard “naive” spectral procedure sets by proportional to the eigenvector associated with

the largest (positive) eigenvalue of A€2. Hence,
131 X vy + kvp,

where £ is the root of the above quadratic corresponding to the largest eigenvalue.
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Step 4: Generic distinctness from regime-specific impacts.

If vy and vy, are collinear, then A(2 is rank one and all eigenvectors associated with nonzero
eigenvalues are proportional to both vy and vy,. If vy L vy, then D = 0 and the unique eigenvector
associated with the positive eigenvalue is proportional to vy.

Outside of these knife-edge cases, the eigenvector vy + kv, is not proportional to either vy or
vr.. Therefore, the uncorrected estimator by generically differs from both regime-specific impact
vectors, implying that the resulting impulse responses correspond to a pseudo-parameter rather than

the true structural impact in either regime.

A.2  Proof of Corollary 2

By regime invariance of A(L), the MA matrices ¥}, do not depend on s. For each regime s, the IRF

is IRF(h) = ¥,v,. The uncorrected estimator satisfies b, vy + kvy, hence
IRF(h) o Wpby = (v + kvy) = IRFy(h) + kIRF,(h),

which is the first claim. The normalized expression follows by dividing both sides by the impact
normalization e, (I RFy(0) + kI RFy,(0)). The final statement follows because (outside the knife-
edge cases) the vectors I RF'y(h) and IRF(h) are not collinear for generic h, so their linear

combination is not proportional to either one.

B Bias correction simulations

Correction Method 1. Figure 2 displays the results from a VAR(1) in two variables, with two

variance regimes and true parameters given by:

0.8.0.1 1 0.7 0.2
A, = ) oy = B = by = (0%, 02) = (4,1), 6 = 0.75,
! (0.25,0.7) “ (0.5) b (0) ? <0.7) (0h,01) = (4,1)

(47)

The solid red and blue lines show the true impulse responses to the shock of interest in the high
and low-variance regimes respectively. The solid black lines show the impulse responses estimated
on a 2,500 observation simulated sample if the researcher does not correct for the bias derived in
Proposition 2, and if the high-variance regime occurs with probability 0.15. The red and blue circles

show the impulse responses estimated on the same simulated data, using the bias correction method
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in Section 4.1, with Assumptions 4 and 5 chosen correctly, and » measured exactly. Since y, is
the variable invariant to attention on impact, I normalize the shock so that the impact is 1 on this
variable in all cases. The correction is able to very closely match the true underlying responses
in each regime, while the uncorrected estimates are far from either true response. The length of

simulation sample is chosen to match that in the application of Section 5.3.

Figure 2: Impulse response functions in simulated data, using correction method 1.
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Note: Impulse responses to structural shock 1 in simulated data from a VAR(1) with two variables and two variance regimes. True parameters are
given in equation (47). The solid red and blue lines show the true impulse responses in the high-variance and low-variance regimes, respectively. The
dashed black line shows the estimate obtained by applying standard heteroskedasticity-based identification to a simulated sample of 2,500
observations, with the high-variance regime occurring with probability 0.15. Red and blue circles show bias-corrected estimates using the method in
Section 4.1, with correct specification of Assumptions 4 and 5 and exact measurement of the inattention ratio . Responses are normalized such that
the impact on y2 equals one.

Figure 2 shows the results in the ideal situation, in which Assumptions 4 and 5 hold exactly, and
the attention proxy (and so the calibration of r) is perfect. Figures 3 and 4 explore the sensitivity of
the method to deviations in the accuracy of Assumption 4 and the calibration of 7.

First, consider the sensitivity to Assumption 4. I maintain the parameters listed in (47), except
I vary the second element of 3; between -0.35 and 0.35. At each of 21 equally-spaced points in
this range, I draw 1000 random samples of 2,500 observations each. I then compute standard and
corrected IRFs, with the correction assuming that the second element of /3 is 0, as in Figure 2. I find
the maximum absolute error between each IRF and the true IRF at which they are aiming. Figure 3a
then plots the median of these maximum-absolute-errors across simulations. The median maximum-

absolute-error for the corrected IRFs is minimized when (;(2) = 0, but it is still substantially below

45



the equivalent errors from the uncorrected estimation for a wide range around that. Indeed, for small
deviations from the strict attention-invariance in Assumption 4, the errors in the corrected IRFs do
not increase substantially: if the impact effect of attention on ¥, is 30% as strong as on ¥y, then the
median maximum-absolute-error increases by 8% (high-attention regime) and 14% (low attention
regime) respectively.

Another way to show this is to plot the improvement in estimates resulting from the correction.
Figure 4a plots the results from the same simulations as Figure 3a, but instead of the median
maximum-absolute-error, it shows the percentage improvement in that error over the uncorrected
case. When Assumption 4 is exactly true, the correction removes more than three quarters of the
error from the uncorrected estimates (more than 88% in the low-variance regime where uncorrected
errors are larger). However, even when 3 is not exactly attention-invariant, the improvements
remain substantial.

Figures 3b and 4b repeat the exercise, but for robustness to mismeasurement of . In this case
the true r is varied between 1.5 and 3.5. Again, at each grid point 1000 simulated samples are drawn,
and in each sample the standard and corrected IRFs are computed, with the correction (wrongly)
assuming r = 2 as in (47). Figure 3b plots the median maximum-absolute-error across simulations,
and Figure 4b plots the percentage improvement in that error over the uncorrected estimates. As
with Assumption 4, small deviations from the assumptions used in the correction make the errors
larger, but not substantially, until the true r goes a long way from the measured value. This is
especially an issue if the true r gets too small, as then the dynamics become quite similar in the two

regimes.

Correction Method 2. Figure 5 displays the results from a VAR(1) in three variables, with three

variance regimes and true parameters given by:

0.6,0.3,0.05 0.4 0.6 0.2,—0.1

A;=1(0.050501],a1=|-01],81=1| 05 |, (ba,b3)=1] 0.3,015 |,
0,0.15,0.55 0.2 —0.3 —0.1,0.25

(0%, 0%,,0%) = (8,1.2,0.6), 0 = 1, (par, par, pr) = (0.7,0.2,0.1). (48)

where p; is the probability of regime s occurring. As with the simulation above, the regimes are
drawn i.1.d., and the variances of the other structural shocks not being studied are normalized to 1.
The IRFs plotted below normalize the structural shock so that it delivers a unit increase in the first
variable in the VAR in all cases.

The solid colored lines show the true impulse responses to the shock of interest in each regime.
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Figure 3: Sensitivity of correction method 1 to Assumption 4 and » measurement: median maximum-

absolute-error across simulations.
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Note: Sensitivity of correction method 1 to violations of Assumption 4 (panel a) and misspecification of the inattention ratio r (panel b). In panel (a),
simulated samples are drawn from the system with parameters described in (47), except for 81 (2), which is varied between -0.35 and 0.35. In panel
(b), 51(2) is fixed at 0, but the true r is varied between 1.5 and 3.5. At each set of parameters, 1000 random samples are drawn, and both standard
and corrected impulse responses are computed. The maximum absolute error between each impulse response and the corresponding true impulse
response is computed for each sample over horizons 0-10. The plots show the medians of these maximum-absolute-errors across the simulations.
Solid lines show errors for the bias-corrected estimates; dashed lines show errors for uncorrected estimates that ignore endogenous attention.

The dashed black lines show the impulse responses estimated on a 2,500 observation simulated
sample if the researcher does not correct for the bias derived in Proposition 2. The colored circles
show the impulse responses estimated using the bias correction method in Section 4.2. While the
results are not as close to the true impulse responses as those from method 1 (Figure 2), especially
for the lowest attention regime, this method requires fewer assumptions on the role of attention in
each variable’s transmission, and still delivers impulse responses close to the true responses in each

regime.
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Figure 4: Sensitivity of correction method 1 to Assumption 4 and r measurement: percentage improvement
in median maximum-absolute-error across simulations.
(a) Assumption 4 violation ; (b) Attention proxy misspecification
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Note: Sensitivity of correction method 1 to violations of Assumption 4 (panel a) and misspecification of the inattention ratio r (panel b). In each
panel, simulations are drawn for varying parameters as in Figure 3 (see associated note for details). The median maximum-absolute-error across
simulations is computed for standard and bias-corrected impulse responses as in Figure 3. The lines plotted here show the percentage improvement in
this median maximum-absolute-error in the bias-corrected impulse responses, relative to the uncorrected impulse responses. Specifically, they show
(medmax (corrected) — medmax (uncorrected)) /medmax (uncorrected). Positive numbers reflect a reduction in median maximum-absolute-errors
due to the bias correction, negative numbers reflect an increase.
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Figure 5: Impulse response functions in simulated data, using correction method 2.
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Note: Impulse responses to structural shock 1 in simulated data from a VAR(1) with three variables and three variance regimes. True parameters are
given in equation (48). Solid red, green, and blue lines show the true impulse responses in the high-, medium-, and low-variance regimes,
respectively. The dashed black line shows the estimate obtained by applying standard heteroskedasticity-based identification to a simulated sample of
2,500 observations, with regime probabilities (pzr, par, pr) = (0.7,0.2,0.1). Colored circles show bias-corrected estimates using the method in
Section 4.2. Responses are normalized such that the impact on y; equals one.
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C Section 5 robustness

Table 4 repeats Table 2, using an alternative Google Trends index reflecting searches for the term
“monetary policy.” Although quantitative magnitudes vary, the key result that search volume is

higher on announcement days is robust.

Table 4: Attention to monetary policy: FOMC vs. Non-FOMC Days

Observations Mean Search Index
Sample FOMC Non-FOMC FOMC Non-FOMC Difference t-statistic
Wright (2008-2011) 23 1,039 53.461 38.223 15.238 3.056
ZLB (2008-2015) 56 2,537 50.342 37.251 13.090 4.290
Full (2006-2019) 113 4,816 49.525 35.421 14.104 6.444

Notes: Google Trends search index for “Monetary Policy” constructed using the Eichenauer et al. (2022) methodology. FOMC days are scheduled
Federal Open Market Committee announcement days. The ¢-statistic tests the null hypothesis that mean attention is equal across FOMC and
non-FOMC days.

Figures 6 and 7 show the bias-corrected IRFs, as in Figure 1, for alternative mappings between
Google Trends data and 77, 77;. In Figure 6, I maintain the linear mapping used for Figure 1, but
calculate average Google Trends volume in each regime after trimming the sample to exclude the
largest and smallest 1% of observations, which yields » = 2.04. In Figure 7, I assume a linear
mapping between 7, ; and log Google Trends volume, which yields r = % = 4.69. In
both cases, the core qualitative results of Figure 1 remain: correcting for the rational-inattention
bias substantially alters the estimated effects of monetary policy shocks, and in particular implies
that the low-variance regime features substantially less persistent transmission to Treasury yields,
and an initial sharp rotation in breakevens.

Finally, Figure 8 shows the bias-corrected IRFs from an alternative procedure in which ¢* is
chosen to minimize the gap between impact effects of attention on the two Treasury yields, as an
alternative to the strict invariance of the 2-year yield in Assumption 4.

Specifically, let vy (¢) and vy (¢) denote the regime-dependent impact vectors for a candidate
rotation ¢. I select the rotation ¢* that minimizes the transmission gap across regimes for both the

2-year and 10-year Treasury yields. That is, I replace equation (41) with:

2
¢ = arg m¢in Z (M - 1) (49)

ke{2y,10y} UL’k(¢)

Using squared fractional differences ensures that the identification is not disproportionately

driven by the maturity with the largest absolute response. This therefore seeks the structural model
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most consistent with the hypothesis that the Treasury curve is driven on impact by equally sized
attention effects across maturities, without forcing any single maturity to be perfectly invariant. To
make the extent of departure from Assumption 4 clear, I normalize the corrected IRFs for both
regimes by the same scaling factor, chosen such that the impact is a 25bp fall in the 2-year Treasury
yield on average across the regimes, rather than normalizing each impulse response individually.

The results are qualitatively identical to Figure 1, and also quantitatively extremely similar.
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Figure 6: Impulse response functions with and without the correction for endogenous attention, with trimmed
Google Trends sample as the attention measure.
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Note: Tmpulse responses to an unconventional monetary policy shock identified via heteroskedasticity, following Wright (2012). The black line
shows the estimate assuming regime-invariant transmission (Assumption 1), with the shaded region indicating 68% bootstrap confidence intervals,
constructed using the Kilian (1998)-adjusted bootstrap. The Kilian bias adjustment is also applied to the point estimates. The red line shows the
bias-corrected impulse response for the high-attention regime (FOMC announcement days), and the blue line shows the bias-corrected response for
the low-attention regime (non-announcement days). Bias correction follows the method in Section 4.1, imposing that the impact effect on the 2-year
Treasury yield is attention-invariant (Assumption 4) and that attention amplifies the impact effect on BAA corporate bond yields (Assumption 5). The
inattention ratio 7 is measured using the Google Trends data described in Section 5.2, after trimming the top and bottom 1% of the observations. The
responses are normalized such that the 2-year Treasury yield falls by 25 basis points on impact in all cases. Sample: November 2008 to December
2015, excluding December 1, 2008 (see text). The VAR is estimated with one lag on daily data.
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Figure 7: Impulse response functions with and without the correction for endogenous attention, with log

Google Trends sample as the attention measure.
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Note: Tmpulse responses to an unconventional monetary policy shock identified via heteroskedasticity, following Wright (2012). The black line

shows the estimate assuming regime-invariant transmission (Assumption 1), with the shaded region indicating 68% bootstrap confidence intervals,
constructed using the Kilian (1998)-adjusted bootstrap. The Kilian bias adjustment is also applied to the point estimates. The red line shows the

bias-corrected impulse response for the high-attention regime (FOMC announcement days), and the blue line shows the bias-corrected response for
the low-attention regime (non-announcement days). Bias correction follows the method in Section 4.1, imposing that the impact effect on the 2-year
Treasury yield is attention-invariant (Assumption 4) and that attention amplifies the impact effect on BAA corporate bond yields (Assumption 5). The
inattention ratio r is measured using the log of the Google Trends series described in Section 5.2. The responses are normalized such that the 2-year
Treasury yield falls by 25 basis points on impact in all cases. Sample: November 2008 to December 2015, excluding December 1, 2008 (see text).

The VAR is estimated with one lag on daily data.
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Figure 8: Impulse response functions with and without the correction for endogenous attention, with
minimum distance criterion for selecting ¢*.
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Note: Impulse responses to an unconventional monetary policy shock identified via heteroskedasticity, following Wright (2012). The black line
shows the estimate assuming regime-invariant transmission (Assumption 1), with the shaded region indicating 68% bootstrap confidence intervals,
constructed using the Kilian (1998)-adjusted bootstrap. The Kilian bias adjustment is also applied to the point estimates. The red line shows the
bias-corrected impulse response for the high-attention regime (FOMC announcement days), and the blue line shows the bias-corrected response for
the low-attention regime (non-announcement days). Bias correction follows the method for Figure 1, except that Assumption 4 is replaced with
equation (49). The responses are normalized such that the 2-year Treasury yield falls by 25 basis points on impact in the uncorrected case, and on
average across the two corrected cases. Sample: November 2008 to December 2015, excluding December 1, 2008 (see text). The VAR is estimated
with one lag on daily data.
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